Аннотация:
Рассматривается параметрическая нелинейная задача математического программирования общего вида в гильбертовом пространстве с операторным ограничением типа равенства и конечным числом функциональных ограничений типа неравенства. Для указанной задачи обсуждается проблема формального конструирования элементов минимизирующей последовательности из элементов минимизирующих последовательностей ее модифицированной функции Лагранжа при значениях двойственных переменных, выбираемых на основе метода стабилизации Тихонова в процессе решения соответствующей модифицированной двойственной задачи. В терминах минимизирующих последовательностей и модифицированных функций Лагранжа доказывается устойчивая к ошибкам исходных данных секвенциальная теорема Куна–Таккера в недифференциальной форме, представляющая собою необходимое и достаточное условие на элементы минимизирующей последовательности. Показывается, что конструкция модифицированной функции Лагранжа является прямым следствием свойств обобщенной дифференцируемости функции значений задачи. Доказательство основано на “нелинейном” варианте метода двойственной регуляризации, обоснование которого приводится в статье. Приводится пример, иллюстрирующий неустойчивость формального построения минимизирующей последовательности без регуляризации решения модифицированной двойственной задачи. Библ. 23.
Ключевые слова:
нелинейное программирование, параметрическая задача, секвенциальная оптимизация, минимизирующая последовательность, принцип Лагранжа, теорема Куна–Таккера в недифференциальной форме, проксимальный субградиент, модифицированная функция Лагранжа, двойственность, регуляризация, метод возмущений.
Образец цитирования:
А. В. Канатов, М. И. Сумин, “Секвенциальная устойчивая теорема Куна–Таккера в нелинейном программировании”, Ж. вычисл. матем. и матем. физ., 53:8 (2013), 1249–1271; Comput. Math. Math. Phys., 53:8 (2013), 1078–1098
М. И. Сумин, “О регуляризации недифференциальной теоремы Куна–Таккера в нелинейной задаче на условный экстремум”, Вестник российских университетов. Математика, 27:140 (2022), 351–374
М. И. Сумин, “Устойчивая секвенциальная теорема Куна–Таккера в итерационной форме или регуляризованный алгоритм Удзавы в регулярной задаче нелинейного программирования”, Ж. вычисл. матем. и матем. физ., 55:6 (2015), 947–977; M. I. Sumin, “Stable sequential Kuhn–Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem”, Comput. Math. Math. Phys., 55:6 (2015), 935–961
Gaikovich K.P., Gaikovich P.K., Sumin M.I., “Stable Sequential Kuhn-Tucker Theorem in One-Dimensional Inverse Problems of Dielectric Reflectometry”, 2014 16th International Conference on Transparent Optical Networks (Icton), International Conference on Transparent Optical Networks-Icton, eds. Jaworski M., Marciniak M., IEEE, 2014
Konstantin P. Gaikovich, Petr K. Gaikovich, Mikhail I. Sumin, 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014, 1