Журнал вычислительной математики и математической физики, 2010, том 50, номер 10, страницы 1771–1792(Mi zvmmf4947)
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
О численных реализациях нового итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса в полосе при условии периодичности
Аннотация:
На основе использования конечно-разностных аппроксимаций по времени и билинейных конечно-элементных аппроксимаций по пространственным переменным построены численные реализации нового итерационного метода с расщеплением граничных условий решения 1-й начально-краевой задачи для нестационарной системы Стокса. Рассмотрен случай задачи в полосе при условии периодичности задачи вдоль нее. Благодаря тому, что на каждой итерации метода происходит расщепление на две существенно более простые (по сравнению с исходной), устойчиво численно аппроксимируемые краевые задачи, на его основе удается построить новые эффективные и устойчивые численные методы решения нестационарной задачи Стокса. При этом скорость и давление аппроксимируются одинаковыми билинейными конечными элементами, и не нужно удовлетворять известному трудно проверяемому условию Ладыженской–Брецци–Бабушки, как это обычно требуется при дискретизации всей задачи в целом. Построены численные итерационные методы как 1-го, так и 2-го порядков точности по временнoму шагу, обеспечивающие 2-й порядок точности по пространственным шагам сетки в норме максимума модуля, причем как для скорости, так и для давления. Численные методы обладают достаточно высокими скоростями сходимости, отвечающими таковым для исходного итерационного метода на дифференциальном уровне (ошибка уменьшается приблизительно в 7 раз за одну итерацию). Приводятся результаты численных экспериментов, иллюстрирующие реальные качества построенных методов. Библ. 20. Табл. 6.
Ключевые слова:
нестационарная задача Стокса, итерационные методы с расщеплением граничных условий, 2-й порядок точности, устойчивые численные реализации.
Образец цитирования:
М. Б. Соловьев, “О численных реализациях нового итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса в полосе при условии периодичности”, Ж. вычисл. матем. и матем. физ., 50:10 (2010), 1771–1792; Comput. Math. Math. Phys., 50:10 (2010), 1682–1701
\RBibitem{Sol10}
\by М.~Б.~Соловьев
\paper О численных реализациях нового итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса в полосе при условии периодичности
\jour Ж. вычисл. матем. и матем. физ.
\yr 2010
\vol 50
\issue 10
\pages 1771--1792
\mathnet{http://mi.mathnet.ru/zvmmf4947}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010CMMPh..50.1682S}
\elib{https://elibrary.ru/item.asp?id=15249921}
\transl
\jour Comput. Math. Math. Phys.
\yr 2010
\vol 50
\issue 10
\pages 1682--1701
\crossref{https://doi.org/10.1134/S0965542510100052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000283299800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958558014}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/zvmmf4947
https://www.mathnet.ru/rus/zvmmf/v50/i10/p1771
Эта публикация цитируется в следующих 5 статьяx:
Б. В. Пальцев, “О собственных функциях оператора Стокса в плоском слое при условии периодичности вдоль слоя”, Ж. вычисл. матем. и матем. физ., 54:2 (2014), 286–297; B. V. Pal'tsev, “On the eigenfunctions of the Stokes operator in a plane layer with a periodicity condition along it”, Comput. Math. Math. Phys., 54:2 (2014), 303–314
М. Б. Соловьев, “О численной реализации итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса на основе двухэтапной асимптотически устойчивой разностной схемы”, Ж. вычисл. матем. и матем. физ., 54:12 (2014), 1894–1903; M. B. Solov'ev, “Numerical implementation of an iterative method with boundary condition splitting for solving the nonstationary stokes problem on the basis of an asymptotically stable two-stage difference scheme”, Comput. Math. Math. Phys., 54:12 (2014), 1817–1825
Б. В. Пальцев, “К теории двухэтапной асимптотически устойчивой схемы второго порядка точности для неоднородной параболической начально-краевой задачи”, Ж. вычисл. матем. и матем. физ., 53:4 (2013), 538–574; B. V. Pal'tsev, “To the theory of asymptotically stable second-order accurate two-stage scheme for an inhomogeneous parabolic initial-boundary value problem”, Comput. Math. Math. Phys., 53:4 (2013), 396–430
Б. В. Пальцев, М. Б. Соловьев, И. И. Чечель, “О развитии итерационных методов с расщеплением граничных условий решения краевых и начально-краевых задач для линеаризованных и нелинейной систем Навье–Стокса”, Ж. вычисл. матем. и матем. физ., 51:1 (2011), 74–95; B. V. Pal'tsev, M. B. Soloviev, I. I. Chechel', “On the development of iterative methods with boundary condition splitting for solving boundary and
initial-boundary value problems for the linearized and nonlinear Navier–Stokes equations”, Comput. Math. Math. Phys., 51:1 (2011), 68–87
М. Б. Соловьев, “Численные реализации итерационного метода с расщеплением граничных условий решения нестационарной задачи Стокса в зазоре между коаксиальными цилиндрами”, Ж. вычисл. матем. и матем. физ., 50:11 (2010), 1998–2016; M. B. Soloviev, “Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders”, Comput. Math. Math. Phys., 50:11 (2010), 1895–1913