Аннотация:
Предложен алгоритм последовательного вычисления многозначных аппроксимаций, или аппроксимаций Паде–Эрмита. Для многочленов, которые участвуют в определении аппроксимаций Паде–Эрмита, получены простые формулы, обобщающие рекуррентные соотношения между числителями и знаменателями подходящих цепных дробей. Найдены общие выражения для коэффициентов рекуррентных соотношений в случаях квадратичных и кубических аппроксимаций к функциям (1+x)α(1+x)α и exex.
Поступила в редакцию: 12.07.1984 Исправленный вариант: 04.04.1985
Egor O. Dobrolyubov, Igor V. Polyakov, Dmitry V. Millionshchikov, Sergey V. Krasnoshchekov, “Vibrational resonance phenomena of the OCS isotopologues studied by resummation of high-order Rayleigh–Schrödinger perturbation theory”, Journal of Quantitative Spectroscopy and Radiative Transfer, 316 (2024), 108909
Xuanhao Chang, Egor O. Dobrolyubov, Sergey V. Krasnoshchekov, “Fundamental studies of vibrational resonance phenomena by multivalued resummation of the divergent Rayleigh–Schrödinger perturbation theory series: deciphering polyad structures of three H216O isotopologues”, Phys. Chem. Chem. Phys., 24:11 (2022), 6655
Н. Р. Икономов, С. П. Суетин, “Алгоритм Висковатова для полиномов Эрмита–Паде”, Матем. сб., 212:9 (2021), 94–118; N. R. Ikonomov, S. P. Suetin, “A Viskovatov algorithm for Hermite-Padé polynomials”, Sb. Math., 212:9 (2021), 1279–1303
Sergey V. Krasnoshchekov, Egor O. Dobrolyubov, Xuanhao Chang, “Hypofluorous acid (HOF): A molecule with a rare (1,-2,-1) vibrational resonance and (8,3,2) polyad structure revealed by Padé-Hermite resummation of divergent Rayleigh-Schrödinger perturbation theory series”, Journal of Quantitative Spectroscopy and Radiative Transfer, 268 (2021), 107620
С. В. Краснощеков, Е. О. Добролюбов, С. Чан, “Фундаментальный анализ сингулярных и резонансных явлений в колебательных полиадах молекулы дифторсилилена”, Оптика и спектроскопия, 128:12 (2020), 1795–1805; S. V. Krasnoshchekov, E. O. Dobrolyubov, X. Chang, “Fundamental analysis of singular and resonance phenomena in vibrational polyads of the difluorosilylene molecule”, Optics and Spectroscopy, 128:12 (2020), 1927–1938
Vincent Neiger, Éric Schost, “Computing syzygies in finite dimension using fast linear algebra”, Journal of Complexity, 60 (2020), 101502
M. Fasondini, N. Hale, R. Spoerer, J. Weideman, “Quadratic Padé approximation: numerical aspects and applications”, Компьютерные исследования и моделирование, 11:6 (2019), 1017–1031
David Z. Goodson, Mathematical Physics in Theoretical Chemistry, 2019, 295
Claude-Pierre Jeannerod, Vincent Neiger, Éric Schost, Gilles Villard, “Computing minimal interpolation bases”, Journal of Symbolic Computation, 83 (2017), 272
Alexey Sergeev, Raka Jovanovic, Sabre Kais, Fahhad H Alharbi, “On the divergence of gradient expansions for kinetic energy functionals in the potential functional theory”, J. Phys. A: Math. Theor., 49:28 (2016), 285202
A. N. Duchko, A. D. Bykov, “Resummation of divergent perturbation series: Application to the vibrational states of H2CO molecule”, The Journal of Chemical Physics, 143:15 (2015)
Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions, 2014, 1
T.M. Feil, H.H.H. Homeier, “Programs for the approximation of real and imaginary single- and multi-valued functions by means of Hermite–Padé-approximants”, Computer Physics Communications, 158:2 (2004), 124
M.A.H. Khan, Y. Tourigny, P.G. Drazin, “A case study of methods of series summation: Kelvin–Helmholtz instability of finite amplitude”, Journal of Computational Physics, 187:1 (2003), 212
David Z. Goodson, “Extrapolating the coupled-cluster sequence toward the full configuration-interaction limit”, The Journal of Chemical Physics, 116:16 (2002), 6948
M.A.H. Khan, “High-order differential approximants”, Journal of Computational and Applied Mathematics, 149:2 (2002), 457
Y Tourigny, P G Drazin, “The dynamics of Padé approximation”, Nonlinearity, 15:3 (2002), 787
Yves Tourigny, Philip G. Drazin, “The asymptotic behaviour of algebraic approximants”, Proc. R. Soc. Lond. A, 456:1997 (2000), 1117
David Z. Goodson, Alexei V. Sergeev, “On the use of algebraic approximants to sum divergent series for Fermi resonances in vibrational spectroscopy”, The Journal of Chemical Physics, 110:16 (1999), 8205