Аннотация:
В статье излагается построение k-шаговых методов решения систем интегральных уравнений типа Вольтерра I и II рода со слабой степенной особенностью ядер в нижнем пределе интегрирования. Матрично-векторная форма таких систем имеет вид абстрактного уравнения с вырожденной матрицей коэффициентов при внеинтегральных слагаемых, которое называют интегроалгебраическим уравнением. Предлагаемые методы основаны на экстраполяционных формулах для главной части, многошаговых методах типа Адамса и формуле интегрирования произведений для интегрального члена. Веса построенных квадратурных формул получены в явном виде. Доказана теорема о сходимости разработанных методов. Приведены численные расчеты тестовых примеров, иллюстрирующие теоретические результаты.
Библ. 30. Фиг. 2. Табл. 8.
Образец цитирования:
М. Н. Ботороева, О. С. Будникова, М. В. Булатов, С. С. Орлов, “Численное решение интегроалгебраических уравнений со слабой граничной особенностью k-шаговыми методами”, Ж. вычисл. матем. и матем. физ., 61:11 (2021), 1825–1838; Comput. Math. Math. Phys., 61:11 (2021), 1787–1799