Loading [MathJax]/jax/output/SVG/config.js
Журнал вычислительной математики и математической физики
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Ж. вычисл. матем. и матем. физ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Журнал вычислительной математики и математической физики, 2016, том 56, номер 2, страницы 332–340
DOI: https://doi.org/10.7868/S0044466916020113
(Mi zvmmf10348)
 

Эта публикация цитируется в 16 научных статьях (всего в 16 статьях)

Полностью полиномиальная аппроксимационная схема для специального случая одной квадратичной евклидовой задачи 2-кластеризации

А. В. Кельмановab, В. И. Хандеевab

a 630090 Новосибирск, пр-т Акад. Коптюга, 4, Ин-т математики СО РАН
b 630090 Новосибирск, ул. Пирогова, 2, Новосибирск. гос. ун-т
Список литературы:
Аннотация: Рассматривается $\mathrm{NP}$-трудная в сильном смысле задача разбиения конечного множества точек евклидова пространства на два кластера заданных размеров по критерию минимума суммы по обоим кластерам сумм квадратов внутрикластерных расстояний от элементов кластеров до их центров. Предполагается, что центр одного из искомых кластеров задан в желаемой (произвольной) точке пространства (без ограничения общности — в начале координат), а центр другого неизвестен и определяется как среднее значение по всем элементам, образующим этот кластер. Установлено, что для этой задачи не существует полностью полиномиальной приближенной схемы, если $\mathrm{P\ne NP}$, и такая схема обоснована для случая, когда размерность пространства фиксирована. Библ. 29.
Ключевые слова: кластерный анализ, разбиение, евклидово пространство, минимум суммы квадратов расстояний, $\mathrm{NP}$-трудность, фиксированная размерность пространства, FPTAS.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 13-07-00070_а
15-01-00462_а
Работа выполнена при поддержке РФФИ (коды проектов 13-07-00070, 15-01-00462).
Поступила в редакцию: 02.03.2015
Англоязычная версия:
Computational Mathematics and Mathematical Physics, 2016, Volume 56, Issue 2, Pages 334–341
DOI: https://doi.org/10.1134/S0965542516020111
Реферативные базы данных:
Тип публикации: Статья
УДК: 519.7
Образец цитирования: А. В. Кельманов, В. И. Хандеев, “Полностью полиномиальная аппроксимационная схема для специального случая одной квадратичной евклидовой задачи 2-кластеризации”, Ж. вычисл. матем. и матем. физ., 56:2 (2016), 332–340; Comput. Math. Math. Phys., 56:2 (2016), 334–341
Цитирование в формате AMSBIB
\RBibitem{KelKha16}
\by А.~В.~Кельманов, В.~И.~Хандеев
\paper Полностью полиномиальная аппроксимационная схема для специального случая одной квадратичной евклидовой задачи 2-кластеризации
\jour Ж. вычисл. матем. и матем. физ.
\yr 2016
\vol 56
\issue 2
\pages 332--340
\mathnet{http://mi.mathnet.ru/zvmmf10348}
\crossref{https://doi.org/10.7868/S0044466916020113}
\elib{https://elibrary.ru/item.asp?id=25343620}
\transl
\jour Comput. Math. Math. Phys.
\yr 2016
\vol 56
\issue 2
\pages 334--341
\crossref{https://doi.org/10.1134/S0965542516020111}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373669000014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962736649}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/zvmmf10348
  • https://www.mathnet.ru/rus/zvmmf/v56/i2/p332
  • Эта публикация цитируется в следующих 16 статьяx:
    1. Vladimir Khandeev, Anna Panasenko, Communications in Computer and Information Science, 1275, Mathematical Optimization Theory and Operations Research, 2020, 30  crossref
    2. A. Panasenko, “A PTAS for one cardinality-weighted 2-clustering problem”, Mathematical Optimization Theory and Operations Research, Lecture Notes in Computer Science, 11548, ed. M. Khachay, Y. Kochetov, P. Pardalos, Springer, 2019, 581–592  crossref  mathscinet  zmath  isi
    3. A. Kel'manov, S. Khamidullin, V. Khandeev, “A randomized algorithm for 2-partition of a sequence”, Analysis of Images, Social Networks and Texts, AIST 2017, Lecture Notes in Computer Science, 10716, eds. W. VanDerAalst, D. Ignatov, M. Khachay, S. Kuznetsov, V. Lempitsky, I. Lomazova, N. Loukachevitch, Springer, 2018, 313–322  crossref  isi  scopus
    4. A. Kel'manov, A. Motkova, V. Shenmaier, “An approximation scheme for a weighted two-cluster partition problem”, Analysis of Images, Social Networks and Texts, AIST 2017, Lecture Notes in Computer Science, 10716, eds. W. VanDerAalst, D. Ignatov, M. Khachay, S. Kuznetsov, V. Lempitsky, I. Lomazova, N. Loukachevitch, A. Napoli, A. Panchenko, P. Pardalos, A. Savchenko, S. Wasserman, Springer, 2018, 323–333  crossref  isi  scopus
    5. А. В. Кельманов, А. В. Моткова, “Приближенный полиномиальный алгоритм для задачи взвешенной 2-кластеризации с ограничением на мощности кластеров”, Ж. вычисл. матем. и матем. физ., 58:1 (2018), 136–142  mathnet  crossref  elib; A. V. Kel'manov, A. V. Motkova, “Polynomial-time approximation algorithm for the problem of cardinality-weighted variance-based 2-clustering with a given center”, Comput. Math. Math. Phys., 58:1 (2018), 130–136  crossref  isi
    6. А. В. Кельманов, С. А. Хамидуллин, В. И. Хандеев, “Рандомизированный алгоритм для задачи двухкластерного разбиения последовательности”, Ж. вычисл. матем. и матем. физ., 58:12 (2018), 2169–2178  mathnet  crossref  elib; A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “A randomized algorithm for a sequence 2-clustering problem”, Comput. Math. Math. Phys., 58:12 (2018), 2078–2085  crossref  isi
    7. A. V. Kel'manov, A. V. Motkova, “Approximation Scheme for a Quadratic Euclidean Weighted 2-Clustering Problem”, Pattern Recognit. Image Anal., 28:1 (2018), 17  crossref
    8. A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, A. V. Pyatkin, “An Exact Algorithm of Searching for the Largest Cluster in an Integer-Valued Problem of 2-Partitioning a Sequence”, Pattern Recognit. Image Anal., 28:4 (2018), 703  crossref
    9. А. В. Кельманов, А. В. Моткова, В. В. Шенмайер, “Приближенная схема для задачи взвешенной 2-кластеризации с фиксированным центром одного кластера”, Тр. ИММ УрО РАН, 23, № 3, 2017, 159–170  mathnet  crossref  elib; A. V. Kel'manov, A. V. Motkova, V. V. Shenmaier, “Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 136–145  crossref  isi
    10. A. V. Eremeev, A. V. Kel'manov, A. V. Pyatkin, “On complexity of searching a subset of vectors with shortest average under a cardinality restriction”, Analysis of Images, Social Networks and Texts, AIST 2016, Communications in Computer and Information Science, 661, eds. D. Ignatov, M. Khachay, V. Labunets, N. Loukachevitch, S. Nikolenko, A. Panchenko, A. Savchenko, et, Springler, 2017, 51–57  crossref  isi
    11. A. Kel'manov, “Efficient approximation algorithms for some NP-hard problems of partitioning a set and a sequence”, 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017, IEEE, 2017, 87–90  crossref  isi
    12. A. Kel'manov, V. Khandeev, “Some algorithms with guaranteed accuracy for 2-clustering problems with given center of one cluster”, 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017, IEEE, 2017, 91–93  crossref  isi
    13. A. Kel'manov, A. Motkova, “An approximation polynomial-time algorithm for a cardinality-weighted 2-clustering problem”, 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON 2017, IEEE, 2017, 94–96  crossref  isi
    14. А. В. Кельманов, С. А. Хамидуллин, В. И. Хандеев, “Полностью полиномиальная аппроксимационная схема для одной задачи двухкластерного разбиения последовательности”, Дискретн. анализ и исслед. опер., 23:2 (2016), 21–40  mathnet  crossref  mathscinet  elib; A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “Fully polynomial-time approximation scheme for a sequence $2$-clustering problem”, J. Appl. Industr. Math., 10:2 (2016), 209–219  crossref
    15. A. Kel'manov, A. Motkova, “A fully polynomial-time approximation scheme for a special case of a balanced 2-clustering problem”, Discrete Optimization and Operations Research, Lecture Notes in Computer Science, 9869, ed. Y. Kochetov, M. Khachay, V. Beresnev, E. Nurminski, P. Pardalos, Springer Int Publishing Ag, 2016, 182–192  crossref  mathscinet  zmath  isi  scopus
    16. А. В. Долгушев, А. В. Кельманов, В. В. Шенмайер, “Полиномиальная аппроксимационная схема для одной задачи разбиения конечного множества на два кластера”, Тр. ИММ УрО РАН, 21:3 (2015), 100–109  mathnet  isi; A. V. Dolgushev, A. V. Kel'manov, V. V. Shenmaier, “Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters”, Proc. Steklov Inst. Math. (Suppl.), 295:1 (2016), 47–56  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Статистика просмотров:
    Страница аннотации:339
    PDF полного текста:61
    Список литературы:75
    Первая страница:10
     
      Обратная связь:
    math-net2025_03@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025