Аннотация:
Работа содержит доказательство разрешимости задачи магнитной гидродинамики со свободной границей в односвязной области. Решение получено в пространствах Соболева–Слободецкого W2+l,1+l/22W2+l,1+l/22, 1/2<l<11/2<l<1. Библ. – 15 назв.
Ключевые слова:
задачи со свободными границами, магнитная гидродинамика, пространства Соболева.
Образец цитирования:
M. Padula, V. A. Solonnikov, “On the free boundary problem of magnetohydrodynamics”, Краевые задачи математической физики и смежные вопросы теории функций. 41, Зап. научн. сем. ПОМИ, 385, ПОМИ, СПб., 2010, 135–186; J. Math. Sci. (N. Y.), 178:3 (2011), 313–344
\RBibitem{PadSol10}
\by M.~Padula, V.~A.~Solonnikov
\paper On the free boundary problem of magnetohydrodynamics
\inbook Краевые задачи математической физики и смежные вопросы теории функций.~41
\serial Зап. научн. сем. ПОМИ
\yr 2010
\vol 385
\pages 135--186
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl3903}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2011
\vol 178
\issue 3
\pages 313--344
\crossref{https://doi.org/10.1007/s10958-011-0550-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053512789}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/znsl3903
https://www.mathnet.ru/rus/znsl/v385/p135
Эта публикация цитируется в следующих 32 статьяx:
Jingchi Huang, Zheng-an Yao, Xiangyu You, “Global well-posedness of the three-dimensional free boundary problem for viscoelastic fluids without surface tension”, Journal of Differential Equations, 417 (2025), 191
Biran Zhang, “The free interface problem of plasma-vacuum with surface tension in a tube domain”, Acta Math Sci, 45:4 (2025), 1307
Chengchun Hao, Siqi Yang, “Splash singularity for the free boundary incompressible viscous MHD”, Journal of Differential Equations, 379 (2024), 26
Junyan Zhang, “Local well-posedness of the free-boundary problem in compressible resistive magnetohydrodynamics”, Calc. Var., 62:4 (2023)
Hans Lindblad, Junyan Zhang, “Anisotropic Regularity of the Free-Boundary Problem in Compressible Ideal Magnetohydrodynamics”, Arch Rational Mech Anal, 247:5 (2023)
Caifeng Liu, “Lagrangian approach to global well-posedness of viscous incompressible MHD equations”, DCDS-B, 28:3 (2023), 2056
E. Frolova, Y. Shibata, “On the Maximal Lp-Lq Regularity Theorem for the Linearized Electro-Magnetic Field Equations with Interface Conditions”, J Math Sci, 260:1 (2022), 87
Elena Frolova, Yoshihiro Shibata, “Local Well-Posedness for the Magnetohydrodynamics in the Different Two Liquids Case”, Mathematics, 10:24 (2022), 4751
Hao Ch., Luo T., “Well-Posedness For the Linearized Free Boundary Problem of Incompressible Ideal Magnetohydrodynamics Equations”, J. Differ. Equ., 299 (2021), 542–601
Shibata Y. Zajaczkowski W.M., “On Local Solutions to a Free Boundary Problem For Incompressible Viscous Magnetohydrodynamics in the l-P-Approach”, Diss. Math., 2021
Wang Ya. Xin Zh., “Global Well-Posedness of Free Interface Problems For the Incompressible Inviscid Resistive Mhd”, Commun. Math. Phys., 388:3 (2021), 1323–1401
Kenta Oishi, Yoshihiro Shibata, “Local Well-Posedness for Free Boundary Problem of Viscous Incompressible Magnetohydrodynamics”, Mathematics, 9:5 (2021), 461
Jang Yu. Kim D., “Suitable Weak Solutions of the Incompressible Magnetohydrodynamic Equations in Time Varying Domains”, Acta Appl. Math., 170:1 (2020), 709–730
Hao Ch., Luo T., “Ill-Posedness of Free Boundary Problem of the Incompressible Ideal Mhd”, Commun. Math. Phys., 376:1 (2020), 259–286
Wang Ya., “Sharp Nonlinear Stability Criterion of Viscous Non-Resistive Mhd Internal Waves in 3D”, Arch. Ration. Mech. Anal., 231:3 (2019), 1675–1743
Hu X., Huang Y., “Well-Posedness of the Free Boundary Problem For Incompressible Elastodynamics”, J. Differ. Equ., 266:12 (2019), 7844–7889
Guo B., Zeng L., Ni G., “Decay Rates For the Viscous Incompressible Mhd Equations With and Without Surface Tension”, Comput. Math. Appl., 77:12 (2019), 3224–3249
Lee D., “Initial Value Problem For the Free-Boundary Magnetohydrodynamics With Zero Magnetic Boundary Condition”, Commun. Math. Sci., 16:3 (2018), 589–615
Kacprzyk P. Zajaczkowski W.M., “On the Faedo-Galerkin Method For a Free Boundary Problem For Incompressible Viscous Magnetohydrodynamics”, Topol. Methods Nonlinear Anal., 52:1 (2018), 69–98
Kacprzyk P., “Local Free Boundary Problem For Viscous Non-Homogeneous Incompressible Magnetohydrodynamics”, Diss. Math., 2018, no. 535, 5–57