Loading [MathJax]/jax/output/CommonHTML/jax.js
Записки научных семинаров ПОМИ
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Зап. научн. сем. ПОМИ:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Записки научных семинаров ПОМИ, 2009, том 368, страницы 110–121 (Mi znsl3506)  

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

Точность аппроксимации в многомерном принципе инвариантности для сумм независимых одинаково распределенных случайных векторов с конечными моментами

Ф. Гётцеa, А. Ю. Зайцевb

a Universität Bielefeld, Fakultät für Mathematik, Bielefeld, Germany
b С.-Петербургское отделение Математического института им. В. А. Стеклова РАН, г. С.-Петербург, Россия
Список литературы:
Аннотация: В статье выведены простейшие следствия из результата авторов, опубликованного в 2008 г. Показано, что в случае независимых одинаково распределенных слагаемых из этого результата следует многомерный вариант одного результата А. И. Саханенко (1985). Мы получаем оценки для точности сильной гауссовской аппроксимации сумм независимых одинаково распределенных Rd-значных случайных векторов ξj, имеющих конечные моменты Eξjγ, γ>2. Библ. – 13 назв.
Ключевые слова: многомерный принцип инвариантности, сильная аппроксимация, суммы независимых случайных векторов.
Поступило: 20.11.2009
Англоязычная версия:
Journal of Mathematical Sciences (New York), 2010, Volume 167, Issue 4, Pages 495–500
DOI: https://doi.org/10.1007/s10958-010-9935-8
Реферативные базы данных:
Тип публикации: Статья
УДК: 519.2
Образец цитирования: Ф. Гётце, А. Ю. Зайцев, “Точность аппроксимации в многомерном принципе инвариантности для сумм независимых одинаково распределенных случайных векторов с конечными моментами”, Вероятность и статистика. 15, Зап. научн. сем. ПОМИ, 368, ПОМИ, СПб., 2009, 110–121; J. Math. Sci. (N. Y.), 167:4 (2010), 495–500
Цитирование в формате AMSBIB
\RBibitem{GotZai09}
\by Ф.~Гётце, А.~Ю.~Зайцев
\paper Точность аппроксимации в~многомерном принципе инвариантности для сумм независимых одинаково распределенных случайных векторов с~конечными моментами
\inbook Вероятность и статистика.~15
\serial Зап. научн. сем. ПОМИ
\yr 2009
\vol 368
\pages 110--121
\publ ПОМИ
\publaddr СПб.
\mathnet{http://mi.mathnet.ru/znsl3506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2749186}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2010
\vol 167
\issue 4
\pages 495--500
\crossref{https://doi.org/10.1007/s10958-010-9935-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953913762}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/znsl3506
  • https://www.mathnet.ru/rus/znsl/v368/p110
  • Эта публикация цитируется в следующих 7 статьяx:
    1. Jetlir Duraj, Kilian Raschel, Pierre Tarrago, Vitali Wachtel, “Martin boundary of random walks in convex cones”, Annales Henri Lebesgue, 5 (2022), 559  crossref
    2. Raschel K., Tarrago P., “Boundary Behavior of Random Walks in Cones”, Markov Process. Relat. Fields, 26:4, SI (2020), 711–756  mathscinet  zmath  isi
    3. Xīlíng Zhāng, “A multi-dimensional central limit bound and its application to the euler approximation for Lévy-SDEs”, ESAIM: PS, 23 (2019), 112  crossref
    4. Lifshits M.A. Nikitin Ya.Yu. Petrov V.V. Zaitsev A.Yu. Zinger A.A., “Toward the History of the Saint Petersburg School of Probability and Statistics. i. Limit Theorems For Sums of Independent Random Variables”, Vestn. St Petersb. Univ.-Math., 51:2 (2018), 144–163  crossref  mathscinet  zmath  isi  scopus
    5. А. Ю. Зайцев, “Точность сильной гауссовской аппроксимации для сумм независимых случайных векторов”, УМН, 68:4(412) (2013), 129–172  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. Yu. Zaitsev, “The accuracy of strong Gaussian approximation for sums of independent random vectors”, Russian Math. Surveys, 68:4 (2013), 721–761  crossref  isi  elib
    6. Ф. Гётце, А. Ю. Зайцев, “Оценки точности сильной аппроксимации в гильбертовом пространстве”, Сиб. матем. журн., 52:4 (2011), 796–808  mathnet  mathscinet; F. Götze, A. Yu. Zaitsev, “Estimates for the rate of strong approximation in Hilbert space”, Siberian Math. J., 52:4 (2011), 628–638  crossref  isi
    7. А. Ю. Зайцев, “Оптимальные оценки точности сильной аппроксимации в бесконечномерном принципе инвариантности”, Вероятность и статистика. 17, Посвящается юбилею Валентина Николаевича СОЛЕВА, Зап. научн. сем. ПОМИ, 396, ПОМИ, СПб., 2011, 93–101  mathnet  mathscinet; A. Yu. Zaitsev, “Optimal estimates for the rate of strong Gaussian approximation in the infinite dimensional invariance principle”, J. Math. Sci. (N. Y.), 188:6 (2013), 689–693  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Статистика просмотров:
    Страница аннотации:264
    PDF полного текста:88
    Список литературы:52
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025