Общие свойства показателя скоростной чувствительности диаграмм деформирования, порождаемых линейной теорией вязкоупругости и существование максимума у его зависимости от скорости
Аннотация:
Анализируется скоростная чувствительность семейства диаграмм деформирования, порождаемых физически линейным определяющим соотношением вязкоупругости Больцмана–Вольтерры с произвольной функцией релаксации в одноосных испытаниях с постоянными скоростями деформации.
Выведено общее выражение для показателя скоростной чувствительности (скоростного упрочнения) и аналитически исследованы его общие качественные свойства: зависимость от деформации, скорости деформации и характеристик функции релаксации, диапазон значений, интервалы монотонности и существование точек экстремума, предельные значения при стремлении скорости деформации к нулю или бесконечности, способы определения по диаграммам деформирования или по кривым релаксации. Установлено, что (в рамках линейной теории вязкоупругости) этот показатель зависит не от двух независимых аргументов (деформации и скорости деформации), а только от их отношения, что он выражается через отношение касательного модуля к секущему и может быть вычислен по одной диаграмме деформирования с произвольной скоростью деформации, и что по заданной (или измеренной в испытаниях) функции скоростной чувствительности можно однозначно восстановить функцию релаксации. Доказано, что значения показателя скоростной чувствительности всегда лежат в интервале от нуля до единицы (т.е. линейное определяющее соотношение описывает только псевдопластические среды и не может описывать дилатантные) и могут быть сколь угодно близки к единице (верхней границе для псевдопластических сред), что как функция скорости он не только может монотонно возрастать или убывать, но может иметь точки экстремума, в частности точку максимума (при малообременительных ограничениях на функцию релаксации). Тем самым обнаружена неожиданная способность линейной теории вязкоупругости не только порождать семейство диаграмм деформирования с выраженными участками течения при практически постоянном напряжении, но и качественно описывать «сигмоидальную» форму зависимости напряжения от скорости деформации (в логарифмических осях) и очень высокую скоростную чувствительность, характерные для режима сверхпластического деформирования материалов.
Установленные свойства показателя скоростной чувствительности и его характерные особенности проиллюстрированы на примерах классических регулярных, сингулярных и фрактальных моделей вязкоупругости (Максвелла, Фойгта, Кельвина, Зенера, Бюргерса, Скотт–Блэра) и их параллельных соединений.
Ключевые слова:
вязкоупругость, диаграммы деформирования, скоростное упрочнение, показатель скоростной чувствительности, функция скоростной чувствительности, псевдопластические среды, фрактальные модели, уравнения с дробной производной, сверхпластичность, сигмоидальная кривая, титановые и алюминиевые сплавы, керамики.
Образец цитирования:
А. В. Хохлов, “Общие свойства показателя скоростной чувствительности диаграмм деформирования, порождаемых линейной теорией вязкоупругости и существование максимума у его зависимости от скорости”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 24:3 (2020), 469–505
\RBibitem{Kho20}
\by А.~В.~Хохлов
\paper Общие свойства показателя скоростной чувствительности диаграмм деформирования, порождаемых линейной теорией вязкоупругости и существование максимума у его зависимости от скорости
\jour Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки
\yr 2020
\vol 24
\issue 3
\pages 469--505
\mathnet{http://mi.mathnet.ru/vsgtu1726}
\crossref{https://doi.org/10.14498/vsgtu1726}
\elib{https://elibrary.ru/item.asp?id=45631181}