Аннотация:
Let A be the infinitesimal generator of a strongly continuous contraction semigroup in a Hilbert space H. We give an upper estimate for the best approximation of the operator A by bounded linear operators with a prescribed norm in the space H on the class Q2={x∈D(A2):‖A2x‖≤1}, where D(A2) denotes the domain of A2.
Образец цитирования:
Elena E. Berdysheva, Maria A. Filatova, “On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space”, Ural Math. J., 3:2 (2017), 40–45
\RBibitem{BerFil17}
\by Elena~E.~Berdysheva, Maria~A.~Filatova
\paper On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space
\jour Ural Math. J.
\yr 2017
\vol 3
\issue 2
\pages 40--45
\mathnet{http://mi.mathnet.ru/umj41}
\crossref{https://doi.org/10.15826/umj.2017.2.006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3746950}
\elib{https://elibrary.ru/item.asp?id=32334097}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/umj41
https://www.mathnet.ru/rus/umj/v3/i2/p40
Эта публикация цитируется в следующих 3 статьяx:
Platon G. Surkov, “Approximate calculation of the Caputo-type fractional derivative from inaccurate data. Dynamical approach”, Fract Calc Appl Anal, 24:3 (2021), 895
V. Arestov, “Uniform Approximation of Differentiation Operators by Bounded Linear Operators in the Space Lr”, Anal Math, 46:3 (2020), 425
В. В. Арестов, “Наилучшее равномерное приближение оператора дифференцирования ограниченными в пространстве $L_2$ операторами”, Тр. ИММ УрО РАН, 24, № 4, 2018, 34–56; V. V. Arestov, “Best Uniform Approximation of the Differentiation Operator by Operators Bounded in the Space $L_2$”, Proc. Steklov Inst. Math. (Suppl.), 308, suppl. 1 (2020), S9–S30