Processing math: 100%
Успехи физических наук
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



УФН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Успехи физических наук, 2017, том 187, номер 9, страницы 921–951
DOI: https://doi.org/10.3367/UFNr.2017.06.038161
(Mi ufn6043)
 

Эта публикация цитируется в 82 научных статьях (всего в 82 статьях)

ОБЗОРЫ АКТУАЛЬНЫХ ПРОБЛЕМ

Переход Березинского – Костерлица – Таулеса и двумерное плавление

В. Н. Рыжов, Е. Е. Тареева, Ю. Д. Фомин, Е. Н. Циок

Институт физики высоких давлений им. Л. Ф. Верещагина РАН
Список литературы:
Аннотация: Подробно изложены основные положения теории фазовых переходов в плоских вырожденных системах (переходов Березинского – Костерлица – Таулеса — БКТ). Обсуждаются механизмы перехода, применение метода ренормализационной группы для его описания, а также возможные изменения сценария перехода в зависимости от энергии ядра топологического дефекта, в частности, в применении к тонким сверхпроводящим плёнкам. Проведён анализ различных сценариев плавления двумерных систем, современного состояния реальных экспериментов и компьютерного моделирования в данной области. Если в трёхмерном случае плавление всегда происходит посредством перехода первого рода, то в двумерном, как показано Хальпериным, Нельсоном и Янгом, система может плавиться посредством двух непрерывных переходов типа БКТ, при этом в ней возникает промежуточная гексатическая фаза, характеризуемая квазидальним ориентационным порядком. Однако в системе также может реализоваться фазовый переход первого рода. Недавно был предложен ещё один, отличающийся от такового в рамках теории Березинского – Костерлица – Таулесса – Хальперина – Нельсона – Янга, сценарий плавления, согласно которому плавление может происходить посредством двух переходов: непрерывного перехода типа БКТ твёрдое тело – гексатическая фаза и последующего перехода первого рода гексатическая фаза – изотропная жидкость. Особое внимание уделено зависимости сценария плавления от вида потенциала и влиянию случайного пиннинга на двумерное плавление. В частности, показано, что случайный пиннинг может принципиально изменить сценарий плавления в случае перехода первого рода. Рассмотрено плавление систем с потенциалами с отрицательной кривизной в области отталкивания, которые успешно применяются для описания аномальных свойств воды в трёх и двух измерениях.
Ключевые слова: двумерные системы, переход Березинского – Костерлица – Таулеса, сверхтекучие плёнки, сверхпроводящие плёнки, XY-модель, двумерные кристаллы, топологические дефекты, вихри, дислокации, дисклинации, гексатическая фаза, двумерное плавление, теория Березинского – Костерлица – Таулеса – Хальперина – Нельсона – Янга, переход первого рода.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 17-02-00320
Российский научный фонд 14-22-00093
Работа поддержана Российским фондом фундаментальных исследований (грант 17-02-00320) и Российским научным фондом (грант 14-22-00093).
Поступила: 15 мая 2017 г.
Доработана: 23 июня 2017 г.
Одобрена в печать: 29 июня 2017 г.
Англоязычная версия:
Physics–Uspekhi, 2017, Volume 60, Issue 9, Pages 857–885
DOI: https://doi.org/10.3367/UFNe.2017.06.038161
Реферативные базы данных:
Тип публикации: Статья
PACS: 02.70.Ns, 05.70.Ln, 64.10.+h, 64.60.Ej, 64.70.D-
Образец цитирования: В. Н. Рыжов, Е. Е. Тареева, Ю. Д. Фомин, Е. Н. Циок, “Переход Березинского – Костерлица – Таулеса и двумерное плавление”, УФН, 187:9 (2017), 921–951; Phys. Usp., 60:9 (2017), 857–885
Цитирование в формате AMSBIB
\RBibitem{RyzTarFom17}
\by В.~Н.~Рыжов, Е.~Е.~Тареева, Ю.~Д.~Фомин, Е.~Н.~Циок
\paper Переход Березинского~--~Костерлица~--~Таулеса и двумерное плавление
\jour УФН
\yr 2017
\vol 187
\issue 9
\pages 921--951
\mathnet{http://mi.mathnet.ru/ufn6043}
\crossref{https://doi.org/10.3367/UFNr.2017.06.038161}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017PhyU...60..857R}
\elib{https://elibrary.ru/item.asp?id=29938128}
\transl
\jour Phys. Usp.
\yr 2017
\vol 60
\issue 9
\pages 857--885
\crossref{https://doi.org/10.3367/UFNe.2017.06.038161}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000417704200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85040965639}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/ufn6043
  • https://www.mathnet.ru/rus/ufn/v187/i9/p921
  • Эта публикация цитируется в следующих 82 статьяx:
    1. С. В. Демишев, “Спин-флуктуационные переходы”, УФН, 194:1 (2024), 23–47  mathnet  crossref  adsnasa; S. V. Demishev, “Spin-fluctuation transitions”, Phys. Usp., 67:1 (2024), 22–43  crossref  isi
    2. Yu-Feng Song, Youjin Deng, Yuan-Yao He, “Nature of the mixed-parity pairing of attractive fermions with spin-orbit coupling in an optical lattice”, Phys. Rev. B, 109:9 (2024)  crossref
    3. E. N. Tsiok, S. A. Bobkov, E. A. Gaiduk, E. E. Tareyeva, Yu. D. Fomin, V. N. Ryzhov, “Geometric Structure of an Aqueous Solution of Paramagnetic Nanoparticles in the Presence of a Magnetic Field”, Phys. Wave Phen., 32:3 (2024), 171  crossref
    4. Yu. D. Fomin, Eu. A. Gaiduk, E.N. Tsiok, V.N. Ryzhov, “The influence of Gaussian pinning on the melting scenario of a two-dimensional soft-disk system: First-order versus continuous transition”, Physica A: Statistical Mechanics and its Applications, 644 (2024), 129841  crossref
    5. Jiayi Ouyang, Yuxuan Liao, Xue Feng, Yongzhuo Li, Kaiyu Cui, Fang Liu, Hao Sun, Wei Zhang, Yidong Huang, “Programmable and reconfigurable photonic simulator for classical XY models”, Phys. Rev. Applied, 22:2 (2024)  crossref
    6. Chin-Wei Lin, Cheng-Jui Chung, Da-Wei Chen, Chih-Chieh Chiang, I.Nan Chen, Zhujialei Lei, Ssu-Yen Huang, Li Min Wang, “Inverse-proximity effect and 2D superconductivity of Ta/Au bilayer thin films”, Journal of Alloys and Compounds, 1008 (2024), 176700  crossref
    7. B. A. Klumov, “Clustering of Defects and Crystallites in a Two-Dimensional Yukawa Fluid”, Jetp Lett., 120:9 (2024), 650  crossref
    8. Б. А. Клумов, “Кластеризация дефектов и кристаллитов в двумерной жидкости Юкавы”, Письма в ЖЭТФ, 120:9 (2024), 675–680  mathnet  crossref
    9. Б. А. Клумов, “Универсальные структурные свойства трёхмерных и двумерных расплавов”, УФН, 193:3 (2023), 305–330  mathnet  crossref  adsnasa; B. A. Klumov, “Universal structural properties of three-dimensional and two-dimensional melts”, Phys. Usp., 66:3 (2023), 288–311  crossref  isi
    10. А. П. Попова, И. С. Попов, С. П. Чемерис, В. В. Прудников, П. В. Прудников, “Эффекты памяти в неравновесном критическом поведении двумерной XY-модели в низкотемпературной фазе Березинского”, Письма в ЖЭТФ, 117:12 (2023), 943–949  mathnet  crossref; A. P. Popova, I. S. Popov, S. P. Chemeris, V. V. Prudnikov, P. V. Prudnikov, “Memory effects in the nonequilibrium critical behavior of the two-dimensional XY model in the low-temperature Berezinskii phase”, JETP Letters, 117:12 (2023), 945–951  crossref
    11. Alexander V. Savin, Yuri S. Kivshar, “Chiral organic molecular structures supported by planar surfaces”, The Journal of Chemical Physics, 159:21 (2023)  crossref
    12. Анатолій Лобурець, Світлана Заïка, “ФАЗОВІ ПЕРЕТВОРЕННЯ І ДИФУЗІЯ ПРИ ПЛАВЛЕННІ СУБМОНОШАРОВИХ АНІЗОТРОПНИХ АДСОРБОВАНИХ ПЛІВОК”, GoS, 2023, № 26, 295  crossref
    13. Rui-xue Guo, Jia-jian Li, Bao-quan Ai, “Melting of two-dimensional deformable particle systems”, Physica A: Statistical Mechanics and its Applications, 623 (2023), 128833  crossref  mathscinet
    14. Chin-Wei Lin, I Nan Chen, Zhujialei Lei, Li Min Wang, “Two-dimensional-like superconducting properties and weak antilocalization transport in FeSe0.4Te0.6 single crystals: Topology-driven magnetotransport”, Phys. Rev. B, 108:21 (2023)  crossref
    15. V. N. Ryzhov, E. A. Gaiduk, Yu. D. Fomin, E. N. Tsiok, “Self-Organization of Two-Dimensional Systems: The Role of Translational and Orientational Order Parameters”, Phys. Part. Nuclei Lett., 20:5 (2023), 1124  crossref
    16. E. A. Gaiduk, Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, “Investigation of the Anomalous Behavior of the Density and Thermal Expansion in a Two-Dimensional System with the Hertz Potential”, Phys. Wave Phen., 31:3 (2023), 135  crossref
    17. Anupam Kumar, Pankaj Mishra, “Structures and freezing transitions in two-dimensional colloids with tunable repulsive interactions”, Fluid Phase Equilibria, 568 (2023), 113726  crossref
    18. Yuan-Heng Tseng, Fu-Jiun Jiang, “Detection of Berezinskii–Kosterlitz–Thouless transitions for the two-dimensional q-state clock models with neural networks”, Eur. Phys. J. Plus, 138:12 (2023)  crossref
    19. V. N. Ryzhov, E. A. Gaiduk, E. E. Tareeva, Yu. D. Fomin, E. N. Tsiok, “Melting Scenarios of Two-Dimensional Systems: Possibilities of Computer Simulation”, J. Exp. Theor. Phys., 137:1 (2023), 125  crossref
    20. V. N Ryzhov, E. A Gayduk, E. E Tareeva, Yu. D Fomin, E. N Tsiok, “Stsenarii plavleniya dvumernykh sistem - vozmozhnosti komp'yuternogo modelirovaniya”, Журнал экспериментальной и теоретической физики, 164:1 (2023), 143  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи физических наук Physics-Uspekhi
    Статистика просмотров:
    Страница аннотации:604
    PDF полного текста:139
    Список литературы:77
    Первая страница:10
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025