Аннотация:
В работе рассматривается задача о параметрическом резонансе для линейных периодических гамильтоновых систем, зависящих от малого параметра. Предлагаются основанные на методах теории возмущений линейных операторов новые формулы в задаче приближенного построения мультипликаторов линейных неавтономных периодических гамильтоновых систем. Основное внимание уделяется получению формул первого приближения для возмущений кратных дефинитных и индефинитных мультипликаторов. Предлагаемые формулы приводят к новым признакам устойчивости по Ляпунову линейных периодических гамильтоновых систем в критических случаях. Рассматриваются приложения в задаче о параметрическом резонансе в основных резонансах. Полученные результаты сформулированы в терминах исходных уравнений и доведены до эффективных формул и алгоритмов. Эффективность предлагаемых формул иллюстрируется при решении задачи о построении границ областей устойчивости треугольных точек либрации плоской ограниченной эллиптической задачи трех тел.
Ключевые слова:
гамильтонова система, устойчивость, мультипликатор, малый параметр, параметрический резонанс, теория возмущений, задача трех тел, точки либрации.
Исследование третьего автора выполнено в рамках государственного задания Министерства науки и
высшего образования Российской Федерации (код научной темы FZWU-2020-0027).
Образец цитирования:
М. Г. Юмагулов, Л. С. Ибрагимова, А. С. Белова, “Методы теории возмущений в задаче о параметрическом резонансе для линейных периодических гамильтоновых систем”, Уфимск. матем. журн., 13:3 (2021), 178–195; Ufa Math. J., 13:3 (2021), 174–190