Аннотация:
Исследуется индекс неограниченного оператора, определенного на обобщенных решениях нелокальной краевой задачи в плоской ограниченной области. Известно, что индекс оператора не меняется при добавлении в краевые условия нелокальных слагаемых с гладкими коэффициентами, имеющими нуль определенного порядка в точках сопряжения нелокальных условий. В работе построены примеры, показывающие, что добавление нелокальных слагаемых с коэффициентами, отличными от нуля в точках сопряжения, может привести к изменению индекса оператора.
Образец цитирования:
П. Л. Гуревич, “О неустойчивости индекса некоторых нелокальных эллиптических задач”, Тр. сем. им. И. Г. Петровского, 26, Изд-во Моск. ун-та, М., 2007, 179–194; J. Math. Sci. (N. Y.), 143:4 (2007), 3293–3302
\RBibitem{Gur07}
\by П.~Л.~Гуревич
\paper О неустойчивости индекса некоторых нелокальных эллиптических задач
\serial Тр. сем. им. И.~Г.~Петровского
\yr 2007
\vol 26
\pages 179--194
\publ Изд-во Моск. ун-та
\publaddr М.
\mathnet{http://mi.mathnet.ru/tsp44}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2816527}
\elib{https://elibrary.ru/item.asp?id=13533820}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 143
\issue 4
\pages 3293--3302
\crossref{https://doi.org/10.1007/s10958-007-0209-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34248386508}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tsp44
https://www.mathnet.ru/rus/tsp/v26/p179
Эта публикация цитируется в следующих 2 статьяx:
A. A. Kon'kov, “On Rapidly Growing Solutions of a Class of Ordinary Differential Equations”, Dokl. Math., 99:2 (2019), 156
П. Л. Гуревич, “Эллиптические задачи с нелокальными краевыми условиями и полугруппы Феллера”, Уравнения в частных производных, СМФН, 38, РУДН, М., 2010, 3–173; P. L. Gurevich, “Elliptic problems with nonlocal boundary conditions and Feller semigroups”, Journal of Mathematical Sciences, 182:3 (2012), 255–440