Аннотация:
Построены решения аналогов временны́х уравнений Шредингера, соответствующих изомонодромной полиномиальной гамильтоновой системе Гарнье с двумя степенями свободы. Они определены решениями линейных обыкновенных дифференциальных уравнений, условием совместности которых является данная система Гарнье. Эти решения с помощью явных замен сводятся также к решениям уравнений Белавина–Полякова–Замолодчикова с четырьмя временами и двумя пространственными переменными.
Образец цитирования:
Д. П. Новиков, Б. И. Сулейманов, ““Квантования” изомонодромной гамильтоновой системы Гарнье с двумя степенями свободы”, ТМФ, 187:1 (2016), 39–57; Theoret. and Math. Phys., 187:1 (2016), 479–496
V. A. Pavlenko, “Solutions of Analogs of Time-Dependent Schrödinger
Equations Corresponding to a Pair of H2+2+1
Hamiltonian Systems in the Hierarchy of Degenerations
of an Isomonodromic Garnier System”, Diff Equat, 60:1 (2024), 77
V. A Pavlenko, “REShENIYa ANALOGOV VREMENNYKh URAVNENIY ShR¨EDINGERA, SOOTVETSTVUYuShchIKh PARE GAMIL'TONOVYKh SISTEM ????2+2+1 IERARKhII VYROZhDENIY IZOMONODROMNOY SISTEMY GARN'E”, Differencialʹnye uravneniâ, 60:1 (2024), 76
В. А. Павленко, “Решения аналогов временны́х уравнений Шредингера, соответствующих паре гамильтоновых систем H3+2”, ТМФ, 212:3 (2022), 340–353; V. A. Pavlenko, “Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of H3+2 Hamiltonian systems”, Theoret. and Math. Phys., 212:3 (2022), 1181–1192
Б. И. Сулейманов, “Изомонодромное квантование второго уравнения Пенлеве посредством консервативных гамильтоновых систем с двумя степенями свободы”, Алгебра и анализ, 33:6 (2021), 141–161; B. I. Suleimanov, “Isomonodromic quantization of the second Painlevé equation by means of conservative Hamiltonian systems with two degrees of freedom”, St. Petersburg Math. J., 33:6 (2022), 995–1009
В. А. Павленко, Б. И. Сулейманов, “Решения аналогов временных уравнений Шредингера, определяемых изомонодромной гамильтоновой системой H2+1+1+1”, Уфимск. матем. журн., 10:4 (2018), 92–102; V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system H2+1+1+1”, Ufa Math. J., 10:4 (2018), 92–102
В. А. Павленко, Б. И. Сулейманов, “«Квантования» изомонодромной гамильтоновой системы H72+1”, Уфимск. матем. журн., 9:4 (2017), 100–110; V. A. Pavlenko, B. I. Suleimanov, ““Quantizations” of isomonodromic Hamilton system H72+1”, Ufa Math. J., 9:4 (2017), 97–107
Б. И. Сулейманов, “Квантовые аспекты интегрируемости третьего уравнения Пенлеве и временное уравнение Шредингера с потенциалом Морса”, Уфимск. матем. журн., 8:3 (2016), 141–159; B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154