Аннотация:
Исследовано многообразие комплексных собственных функций Блоха–Флоке для нулевого уровня двумерного нерелятивистского оператора Паули, описывающего движение заряженной частицы в периодическом магнитном поле с нулевым потоком через элементарную ячейку и нулевым электрическим полем. Это многообразие полностью изучено для широкого класса алгебро-геометрических операторов. В случае ненулевого потока основное состояние оператора Паули для быстроубывающих на бесконечности полей было найдено Аароновым и Кашером, а для периодических полей – Дубровиным и Новиковым. Для полей с ненулевым потоком алгебро-геометрические операторы ранее известны не были, поскольку комплексное продолжение “магнитных” собственных функций Блоха–Флоке очень плохо ведет себя на бесконечности. Построено несколько неособых алгебро-геометрических периодических полей (с нулевым потоком через элементарную ячейку), отвечающих комплексным римановым поверхностям рода ноль. Для более высоких родов построены периодические операторы с интересными магнитными полями и эффектом Ааронова–Бома. Алгебро-геометрические решения рода ноль порождают также солитоноподобные неособые магнитные поля, поток которых через диск радиуса RR пропорционален RR (медленно расходится при R→∞R→∞). Для этого случая найдены наиболее интересные основные состояния в гильбертовом пространстве L2(R2).
Ключевые слова:
двумерный оператор Паули, задача при одной энергии, алгебро-геометрическое решение, ненулевой магнитный поток, основное состояние, собственная функция Блоха–Флоке, эффект Ааронова–Бома.
Образец цитирования:
П. Г. Гриневич, А. Е. Миронов, С. П. Новиков, “О нулевом уровне чисто магнитного двумерного нерелятивистского оператора Паули для частиц со спином 1/2”, ТМФ, 164:3 (2010), 333–353; Theoret. and Math. Phys., 164:3 (2010), 1110–1127
Polina A. Leonchik, Andrey E. Mironov, “Two-dimensional discrete operators and rational functions on algebraic curves”, São Paulo J. Math. Sci., 2024
П. Г. Гриневич, П. М. Сантини, “Конечнозонный подход в периодической задаче Коши для (2+1)-мерных аномальных волн фокусирующего уравнения Дэви–Стюартсона 2”, УМН, 77:6(468) (2022), 77–108; P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic Cauchy problem for (2+1)-dimensional anomalous waves for the focusing Davey–Stewartson 2 equation”, Russian Math. Surveys, 77:6 (2022), 1029–1059
П. Г. Гриневич, А. Е. Миронов, С. П. Новиков, “О нерелятивистском двумерном чисто магнитном суперсимметричном операторе Паули”, УМН, 70:2(422) (2015), 109–140; P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329
И. А. Тайманов, “Сингулярные спектральные кривые в конечнозонном интегрировании”, УМН, 66:1(397) (2011), 111–150; I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Russian Math. Surveys, 66:1 (2011), 107–144
Grinevich P.G., Mironov A.E., Novikov S.P., “Two-dimensional Pauli operator in a magnetic field”, Low Temperature Physics, 37:10 (2011), 829–833