Аннотация:
Предложен метод некоммутативного интегрирования линейных дифференциальных уравнений в частных производных, представляющий собой аналог некоммутативного интегрирования конечномерных гамильтоновых систем. Основой метода является введенное в работе понятие $\lambda$-представления алгебр Ли. Метод применен к задаче интегрирования уравнения Клейна–Гордона в римановых пространствах нештеккелева типа (т. е. в пространствах, не допускающих полного разделения переменных).
Образец цитирования:
А. В. Шаповалов, И. В. Широков, “Некоммутативное интегрирование линейных дифференциальных уравнений”, ТМФ, 104:2 (1995), 195–213; Theoret. and Math. Phys., 104:2 (1995), 921–934
A. A. Magazev, I. V. Shirokov, “On integrability of Klein-Gordon equations in electromagnetic fields invariant under subgroups of the Poincare group”, Russ Phys J, 2025
Alexander I. Breev, Dmitry M. Gitman, Paulo A. Derolle, “Coherent states of an accelerated particle”, Eur. Phys. J. Plus, 139:10 (2024)
Alexander Shapovalov, Alexander Breev, “Harmonic Oscillator Coherent States from the Standpoint of Orbit Theory”, Symmetry, 15:2 (2023), 282
Obukhov V.V., “<P>Algebra of the Symmetry Operators of the Klein-Gordon-Fock Equation For the Case When Groups of Motions G(3) Act Transitively on Null Subsurfaces of Spacetime</P>”, Symmetry-Basel, 14:2 (2022), 346
Alexander Breev, Alexander Shapovalov, Dmitry Gitman, “Noncommutative Reduction of Nonlinear Schrödinger Equation on Lie Groups”, Universe, 8:9 (2022), 445
A. I. Breev, S. P. Gavrilov, D. M. Gitman, “Spinor Field Singular Functions in QED with Strong External Backgrounds”, J. Exp. Theor. Phys., 134:2 (2022), 157
Magazev A.A. Boldyreva M.N., “Schrodinger Equations in Electromagnetic Fields: Symmetries and Noncommutative Integration”, Symmetry-Basel, 13:8 (2021), 1527
Boldyreva M.N. Magazev A.A., “Exact Solutions of Klein-Gordon Equations in External Electromagnetic Fields on 3D de Sitter Background”, J. Math. Phys., 62:5 (2021), 053503
Obukhov V., “Separation of Variables in Hamilton-Jacobi and Klein-Gordon-Fock Equations For a Charged Test Particle in the Stackel Spaces of Type (1.1)”, Int. J. Geom. Methods Mod. Phys., 18:3 (2021), 2150036
M N Boldyreva, “Symmetry algebra of the time-dependent Schrödinger equation in constant and uniform fields”, J. Phys.: Conf. Ser., 1791:1 (2021), 012070
Ivanov D.A. Breev A.I., “Noncommutative Integration of the Klein-Gordon Equation in Electromagnetic Fields Admitting Functional Arbitrariness”, Russ. Phys. J., 62:12 (2020), 2169–2179
Obukhov V., “Separation of Variables in Hamilton-Jacobi Equation For a Charged Test Particle in the Stackel Spaces of Type (2.1)”, Int. J. Geom. Methods Mod. Phys., 17:14 (2020), 2050186
Breev A. Shapovalov A., “Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces”, Symmetry-Basel, 12:11 (2020), 1867
Breev I A. Shapovalov V A., “Vacuum Quantum Effects on Lie Groups With Bi-Invariant Metrics”, Int. J. Geom. Methods Mod. Phys., 16:8 (2019), 1950122
Boldyreva M.N., Magazev A.A., “On the Lie Symmetry Algebras of the Stationary Schr?dinger and Pauli Equations”, Russ. Phys. J., 59:10 (2017), 1671–1680
Breev A.I., Magazev A.A., “Integration of the Dirac Equation on Lie Groups in An External Electromagnetic Field Admitting a Noncommutative Symmetry Algebra”, Russ. Phys. J., 59:12 (2017), 2048–2058
A. I. Breev, A. V. Shapovalov, “Noncommutative Integrability of the Klein–Gordon and Dirac Equations in (2+1)-Dimensional Spacetime”, Russ Phys J, 59:11 (2017), 1956
Breev A.I., Kozlov A.V., “Vacuum Averages of the Energy-Momentum Tensor of a Scalar Field in Homogeneous Spaces With a Conformal Metric”, Russ. Phys. J., 58:9 (2016), 1248–1257
А. И. Бреев, А. В. Шаповалов, А. В. Козлов, “Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX”, Компьютерные исследования и моделирование, 8:3 (2016), 433–443