Аннотация:
This paper contains several results about the structure of the congruence kernel $C^{(S)}(G)$ of an absolutely almost simple simply connected algebraic group $G$ over a global field $K$ with respect to a set of places $S$ of $K$. In particular, we show that $C^{(S)}(G)$ is always trivial if $S$ contains a generalized arithmetic progression. We also give a criterion for the centrality of $C^{(S)}(G)$ in the general situation in terms of the existence of commuting lifts of the groups $G(K_v)$ for $v\notin S$ in the $S$-arithmetic completion $\widehat {G}^{(S)}$. This result enables one to give simple proofs of the centrality in a number of cases. Finally, we show that if $K$ is a number field and $G$ is $K$-isotropic, then $C^{(S)}(G)$ as a normal subgroup of $\widehat {G}^{(S)}$ is almost generated by a single element.
Образец цитирования:
Gopal Prasad, Andrei S. Rapinchuk, “On the congruence kernel for simple algebraic groups”, Алгебра, геометрия и теория чисел, Сборник статей. К 75-летию со дня рождения академика Владимира Петровича Платонова, Труды МИАН, 292, МАИК «Наука/Интерпериодика», М., 2016, 224–254; Proc. Steklov Inst. Math., 292 (2016), 216–246
\RBibitem{PraRap16}
\by Gopal~Prasad, Andrei~S.~Rapinchuk
\paper On the congruence kernel for simple algebraic groups
\inbook Алгебра, геометрия и теория чисел
\bookinfo Сборник статей. К~75-летию со дня рождения академика Владимира Петровича Платонова
\serial Труды МИАН
\yr 2016
\vol 292
\pages 224--254
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3689}
\crossref{https://doi.org/10.1134/S0371968516010143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628463}
\elib{https://elibrary.ru/item.asp?id=25772722}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 292
\pages 216--246
\crossref{https://doi.org/10.1134/S0081543816010144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376271200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971268646}