|
Труды Математического института имени В. А. Стеклова, 2002, том 239, страницы 170–178
(Mi tm366)
|
|
|
|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
An Infinite Series of Perfect Quadratic Forms and Big Delaunay Simplices in Zn
R. M. Erdahla, K. A. Rybnikovb a Queen's University
b Cornell University
Аннотация:
G. Voronoi (1908–09) introduced two important reduction methods for
positive quadratic forms, the reduction with perfect forms and the
reduction with L-type domains. A form is perfect if it can be
reconstructed from all representations of its arithmetic minimum. Two forms
have the same L-type if the Delaunay tilings of their lattices are
affinely equivalent. Delaunay (1937–38) asked about possible relative
volumes of lattice Delaunay simplices. We construct an infinite series of
Delaunay simplices of relative volume n−3, the best known up to now. This
series gives rise to an infinite series of perfect forms with remarkable
properties (e.g. τ5∼D5∼ϕ52, τ6∼E∗6, and τ7∼φ715); for all n, the
domain of τn is adjacent to the domain of Dn, the 2nd
perfect form. The perfect form τn is a direct n-dimensional
generalization of the Korkine and Zolotareff 3rd perfect form ϕ52 in five variables. We prove that τn is equivalent to the
Anzin (1991) form hn.
Поступило в марте 2002 г.
Образец цитирования:
R. M. Erdahl, K. A. Rybnikov, “An Infinite Series of Perfect Quadratic Forms and Big Delaunay Simplices in Zn”, Дискретная геометрия и геометрия чисел, Сборник статей. К 70-летию со дня рождения профессора Сергея Сергеевича Рышкова, Труды МИАН, 239, Наука, МАИК «Наука/Интерпериодика», М., 2002, 170–178; Proc. Steklov Inst. Math., 239 (2002), 159–167
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm366 https://www.mathnet.ru/rus/tm/v239/p170
|
Статистика просмотров: |
Страница аннотации: | 263 | PDF полного текста: | 109 | Список литературы: | 61 |
|