Аннотация:
This paper deals with three major types of convergence of probability measures on metric spaces: weak convergence, setwise convergence, and convergence in total variation. First, it describes and compares necessary and sufficient conditions for these types of convergence, some of which are well-known, in terms of convergence of probabilities of open and closed sets and, for the probabilities on the real line, in terms of convergence of distribution functions. Second, it provides criteria for weak and setwise convergence of probability measures and continuity of stochastic kernels in terms of convergence of probabilities defined on the base of the topology generated by the metric. Third, it provides applications to control of partially observable Markov decision processes and, in particular, to Markov decision models with incomplete information.
Образец цитирования:
Eugene A. Feinberg, Pavlo O. Kasyanov, Michael Z. Zgurovsky, “Convergence of probability measures and Markov decision models with incomplete information”, Стохастическое исчисление, мартингалы и их применения, Сборник статей. К 80-летию со дня рождения академика Альберта Николаевича Ширяева, Труды МИАН, 287, МАИК «Наука/Интерпериодика», М., 2014, 103–124; Proc. Steklov Inst. Math., 287:1 (2014), 96–117
\RBibitem{FeiKasZgu14}
\by Eugene~A.~Feinberg, Pavlo~O.~Kasyanov, Michael~Z.~Zgurovsky
\paper Convergence of probability measures and Markov decision models with incomplete information
\inbook Стохастическое исчисление, мартингалы и их применения
\bookinfo Сборник статей. К~80-летию со дня рождения академика Альберта Николаевича Ширяева
\serial Труды МИАН
\yr 2014
\vol 287
\pages 103--124
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3583}
\crossref{https://doi.org/10.1134/S0371968514040062}
\elib{https://elibrary.ru/item.asp?id=22681989}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 287
\issue 1
\pages 96--117
\crossref{https://doi.org/10.1134/S0081543814080069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348379600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921912310}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3583
https://doi.org/10.1134/S0371968514040062
https://www.mathnet.ru/rus/tm/v287/p103
Эта публикация цитируется в следующих 21 статьяx:
Eugene A. Feinberg, Pavlo O. Kasyanov, “Equivalent conditions for weak continuity of nonlinear filters”, Systems & Control Letters, 173 (2023), 105458
Eugene A. Feinberg, Pavlo O. Kasyanov, Michael Z. Zgurovsky, “Solutions for zero‐sum two‐player games with noncompact decision sets and unbounded payoffs”, Naval Research Logistics, 70:5 (2023), 493
Eugene A. Feinberg, Pavlo O. Kasyanov, Michael Z. Zgurovsky, “Semi-uniform Feller Stochastic Kernels”, J Theor Probab, 36:4 (2023), 2262
José M. Mazón, Marcos Solera-Diana, J. Julián Toledo-Melero, Progress in Nonlinear Differential Equations and Their Applications, 103, Variational and Diffusion Problems in Random Walk Spaces, 2023, 1
Eugene A. Feinberg, Pavlo O. Kasyanov, Michael Z. Zgurovsky, “Markov Decision Processes with Incomplete Information and Semiuniform Feller Transition Probabilities”, SIAM J. Control Optim., 60:4 (2022), 2488
Terence Chan, “On a new class of continuous indices of inequality”, Mathematical Social Sciences, 120 (2022), 8
Liang Z., Wu Q., “Several Different Types of Convergence For Nd Random Variables Under Sublinear Expectations”, Discrete Dyn. Nat. Soc., 2021 (2021), 6653435
Eugene A. Feinberg, Pavlo O. Kasyanov, Michael Z. Zgurovsky, Emergence, Complexity and Computation, 41, Modern Trends in Controlled Stochastic Processes:, 2021, 1
Eugene A. Feinberg, Pavlo O. Kasyanov, Michael Z. Zgurovsky, 2021 60th IEEE Conference on Decision and Control (CDC), 2021, 1615
Oleg V. Barabash, Andrii P. Musienko, Valentyn V. Sobchuk, Nataliia V. Lukova-Chuiko, Olga V. Svynchuk, Understanding Complex Systems, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, 2021, 433
Е. А. Файнберг, П. О. Касьянов, Я. Лианг, “Лемма Фату в классической форме и теоремы Лебега о сходимости для последовательности мер с приложениями к управляемым марковским процессам”, Теория вероятн. и ее примен., 65:2 (2020), 338–367; E. A. Feinberg, P. O. Kas'yanov, Y. Liang, “Fatou's lemma in its classical form and Lebesgue's convergence theorems for varying measures with applications to Markov decision processes”, Theory Probab. Appl., 65:2 (2020), 270–291
E. A. Feinberg, A. Piunovskiy, “Sufficiency of deterministic policies for atomless discounted and uniformly absorbing mdps with multiple criteria”, SIAM J. Control Optim., 57:1 (2019), 163–191
A. D. Kara, N. Saldi, S. Yuksel, “On weak Feller continuity properties of non-linear filters”, 2019 IEEE 58Th Conference on Decision and Control (Cdc), IEEE Conference on Decision and Control, IEEE, 2019, 654–659
A. D. Kara, N. Saldi, S. Yuksel, “Weak Feller property of non-linear filters”, Syst. Control Lett., 134 (2019), UNSP 104512
Ali Devran Kara, Naci Saldi, Serdar Yuksel, 2019 IEEE 58th Conference on Decision and Control (CDC), 2019, 654
M. Z. Zgurovsky, P. O. Kasyanov, “Indirect Lyapunov method for autonomous dynamical systems”: M. Z. Zgurovsky, P. O. Kasyanov, Qualitative and Quantitative Analysis of Nonlinear Systems: Theory and Applications, Studies in Systems Decision and Control, 111, Springer, 2018, 211–237
N. Baeuerle, U. Rieder, “Partially observable risk-sensitive Markov decision processes”, Math. Oper. Res., 42:4 (2017), 1180–1196
Zgurovsky M.Z., Kasyanov P.O., “Method of Artificial Control and the 3D Navier-Stokes System”, Optimization Methods and Applications: in Honor of Ivan V. Sergienko'S 80Th Birthday, Springer Optimization and Its Applications, 130, eds. Butenko S., Pardalos P., Shylo V., Springer International Publishing Ag, 2017, 585–600
E. A. Feinberg, P. O. Kasyanov, M. Z. Zgurovsky, “Uniform Fatou's lemma”, J. Math. Anal. Appl., 444:1 (2016), 550–567
E. A. Feinberg, P. O. Kasyanov, M. Z. Zgurovsky, “Partially observable total-cost Markov decision processes with weakly continuous transition probabilities”, Math. Oper. Res., 41:2 (2016), 656–681