Аннотация:
We revisit the problem of sequential testing composite hypotheses, considering multiple hypotheses and very general non-i.i.d. stochastic models. Two sequential tests are studied: the multihypothesis generalized sequential likelihood ratio test and the multihypothesis adaptive sequential likelihood ratio test with one-stage delayed estimators. While the latter loses information compared to the former, it has an advantage in designing thresholds to guarantee given upper bounds for probabilities of errors, which is practically impossible for the generalized likelihood ratio type tests. It is shown that both tests have asymptotic optimality properties minimizing the expected sample size or even more generally higher moments of the stopping time as probabilities of errors vanish. Two examples that illustrate the general theory are presented.
Образец цитирования:
Alexander G. Tartakovsky, “Nearly optimal sequential tests of composite hypotheses revisited”, Стохастическое исчисление, мартингалы и их применения, Сборник статей. К 80-летию со дня рождения академика Альберта Николаевича Ширяева, Труды МИАН, 287, МАИК «Наука/Интерпериодика», М., 2014, 279–299; Proc. Steklov Inst. Math., 287:1 (2014), 268–288
\RBibitem{Tar14}
\by Alexander~G.~Tartakovsky
\paper Nearly optimal sequential tests of composite hypotheses revisited
\inbook Стохастическое исчисление, мартингалы и их применения
\bookinfo Сборник статей. К~80-летию со дня рождения академика Альберта Николаевича Ширяева
\serial Труды МИАН
\yr 2014
\vol 287
\pages 279--299
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3574}
\crossref{https://doi.org/10.1134/S0371968514040165}
\elib{https://elibrary.ru/item.asp?id=22681999}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2014
\vol 287
\issue 1
\pages 268--288
\crossref{https://doi.org/10.1134/S0081543814080161}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000348379600016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921909568}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3574
https://doi.org/10.1134/S0371968514040165
https://www.mathnet.ru/rus/tm/v287/p279
Эта публикация цитируется в следующих 8 статьяx:
Haoyun Wang, Yao Xie, “Sequential change‐point detection: Computation versus statistical performance”, WIREs Computational Stats, 16:1 (2024)
Tomer Gafni, Benjamin Wolff, Guy Revach, Nir Shlezinger, Kobi Cohen, “Anomaly Search Over Discrete Composite Hypotheses in Hierarchical Statistical Models”, IEEE Trans. Signal Process., 71 (2023), 202
Jaehyeok Shin, Aaditya Ramdas, Alessandro Rinaldo, “E-detectors: A Nonparametric Framework for Sequential Change Detection”, The New England Journal of Statistics in Data Science, 2023, 1
Benjamin Wolff, Tomer Gafni, Guy Revach, Nir Shlezinger, Kobi Cohen, 2022 IEEE International Symposium on Information Theory (ISIT), 2022, 2421
Paul B., De Sh.K., Kundu D., “A Sequential Sampling Approach For Discriminating Log-Normal, Weibull, and Log-Logistic Distributions”, Commun. Stat.-Simul. Comput., 2021
Hecker J., Ruczinski I., Cho M.H., Silverman E.K., Coull B., Lange Ch., “A Flexible and Nearly Optimal Sequential Testing Approach to Randomized Testing: Quick-Stop”, Genet. Epidemiol., 44:2 (2020), 139–147
P. Khanduri, D. Pastor, V. Sharma, P. K. Varshney, “Truncated sequential non-parametric hypothesis testing based on random distortion testing”, IEEE Trans. Signal Process., 67:15 (2019), 4027–4042