Аннотация:
We prove general a priori estimates of the solutions of a class of quasilinear elliptic systems on Carnot groups. As a consequence, we obtain several nonexistence theorems. The results are new even in the Euclidean setting.
Образец цитирования:
Lorenzo D'Ambrosio, Enzo Mitidieri, “Entire solutions of quasilinear elliptic systems on Carnot groups”, Теория функций и уравнения математической физики, Сборник статей. К 90-летию со дня рождения члена-корреспондента РАН Льва Дмитриевича Кудрявцева, Труды МИАН, 283, МАИК «Наука/Интерпериодика», М., 2013, 9–24; Proc. Steklov Inst. Math., 283 (2013), 3–19
\RBibitem{DamMit13}
\by Lorenzo~D'Ambrosio, Enzo~Mitidieri
\paper Entire solutions of quasilinear elliptic systems on Carnot groups
\inbook Теория функций и уравнения математической физики
\bookinfo Сборник статей. К~90-летию со дня рождения члена-корреспондента РАН Льва Дмитриевича Кудрявцева
\serial Труды МИАН
\yr 2013
\vol 283
\pages 9--24
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3516}
\crossref{https://doi.org/10.1134/S037196851304002X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3479945}
\elib{https://elibrary.ru/item.asp?id=20783226}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 283
\pages 3--19
\crossref{https://doi.org/10.1134/S0081543813080026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000330983000001}
\elib{https://elibrary.ru/item.asp?id=24699394}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868706898}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3516
https://doi.org/10.1134/S037196851304002X
https://www.mathnet.ru/rus/tm/v283/p9
Эта публикация цитируется в следующих 13 статьяx:
A.A. Kon'kov, A.E. Shishkov, “On blow-up conditions for solutions of a class of second-order elliptic inequalities”, Journal of Mathematical Analysis and Applications, 2025, 129330
А. А. Коньков, А. Е. Шишков, “О глобальных решениях квазилинейных дифференциальных неравенств второго порядка”, Матем. заметки, 116:5 (2024), 759–765; A. A. Kon'kov, A. E. Shishkov, “On global solutions of second-order quasilinear elliptic inequalities”, Math. Notes, 116:5 (2024), 1014–1019
Umberto Guarnotta, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2021, 2849, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2021, 2023, 340006
Bing Wang, Hui-Chun Zhang, “Liouville theorems for semilinear differential inequalities on sub-Riemannian manifolds”, Journal of Functional Analysis, 285:5 (2023), 110007
Guarnotta U., Marano S.A., Moussaoui A., “Singular Quasilinear Convective Elliptic Systems in Double-Struck Capital R-N”, Adv. Nonlinear Anal., 11:1 (2022), 741–756
Mei-qiang Feng, “A Class of Singular Coupled Systems of Superlinear Monge-Ampère Equations”, Acta Math. Appl. Sin. Engl. Ser., 38:4 (2022), 925
Feng M., “Convex Solutions of Monge-Ampere Equations and Systems: Existence, Uniqueness and Asymptotic Behavior”, Adv. Nonlinear Anal., 10:1 (2021), 371–399
D'Ambrosio L., Mitidieri E., “On Some Multicomponent Quasilinear Elliptic Systems”, J. Math. Anal. Appl., 490:1 (2020), 124207
Santos C.A., Alves R.L., Reis M., Zhou J., “Maximal Domains of the (Lambda,Mu)-Parameters to Existence of Entire Positive Solutions For Singular Quasilinear Elliptic Systems”, J. Fixed Point Theory Appl., 22:3 (2020), 54
Biswas A., “Liouville Type Results For Systems of Equations Involving Fractional Laplacian in Exterior Domains”, Nonlinearity, 32:6 (2019), 2246–2268
L. D'Ambrosio, E. Mitidieri, “Quasilinear elliptic systems in divergence form associated to general nonlinearities”, Adv. Nonlinear Anal., 7:4 (2018), 425–447
M. Ferrara, G. M. Bisci, D. Repovs, “Nonlinear elliptic equations on Carnot groups”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 111:3 (2017), 707–718
L. D'Ambrosio, “A new critical curve for a class of quasilinear elliptic systems”, Nonlinear Anal.-Theory Methods Appl., 78 (2013), 62–78