Аннотация:
Let $(Z_n)$ be a supercritical branching process in an independent and identically distributed random environment $\zeta=(\zeta_0,\zeta_1,\ldots)$, and let $W$ be the limit of the normalized population size $Z_n/\mathbb E(Z_n|\zeta)$. We show a necessary and sufficient condition for the existence of weighted moments of $W$ of the form $\mathbb E\,W^\alpha\ell(W)$, where $\alpha\geq1$ and $\ell$ is a positive function slowly varying at $\infty$.
Образец цитирования:
Xingang Liang, Quansheng Liu, “Weighted moments of the limit of a branching process in a random environment”, Ветвящиеся процессы, случайные блуждания и смежные вопросы, Сборник статей. Посвящается памяти члена-корреспондента РАН Бориса Александровича Севастьянова, Труды МИАН, 282, МАИК «Наука/Интерпериодика», М., 2013, 135–153; Proc. Steklov Inst. Math., 282 (2013), 127–145
\RBibitem{LiaLiu13}
\by Xingang~Liang, Quansheng~Liu
\paper Weighted moments of the limit of a~branching process in a~random environment
\inbook Ветвящиеся процессы, случайные блуждания и смежные вопросы
\bookinfo Сборник статей. Посвящается памяти члена-корреспондента РАН Бориса Александровича Севастьянова
\serial Труды МИАН
\yr 2013
\vol 282
\pages 135--153
\publ МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm3492}
\crossref{https://doi.org/10.1134/S0371968513030126}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308588}
\elib{https://elibrary.ru/item.asp?id=20280552}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2013
\vol 282
\pages 127--145
\crossref{https://doi.org/10.1134/S0081543813060126}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325961800012}
\elib{https://elibrary.ru/item.asp?id=22205492}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886035351}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm3492
https://doi.org/10.1134/S0371968513030126
https://www.mathnet.ru/rus/tm/v282/p135
Эта публикация цитируется в следующих 20 статьяx:
Xulan Huang, “Quenched weighted moments for a branching process with immigration in a random environment”, Stochastic Models, 40:2 (2024), 278
聪 彭, “Probability Inequalities for Weighted Branching Processes in Random Environments”, AAM, 13:08 (2024), 4043
Jian-xin Liu, Zhi-qiang Gao, “Exact Convergence Rate of the Local Limit Theorem for a Branching Random Walk in ℤd with a Random Environment in Time”, Chin. Ann. Math. Ser. B, 45:5 (2024), 805
Wang Yanqing, Wang Dianni, Liu Jinling, Liu Quansheng, “Limit theorems for a supercritical two-type decomposable branching process in a random environment”, Sci. Sin.-Math., 2024
И. Грама, Цюаньшэн Лю, Э. Пин, “Сходимость в $L^p$ надкритического многотипного ветвящегося процесса в случайной среде”, Ветвящиеся процессы и смежные вопросы, Сборник статей. К 75-летию со дня рождения Андрея Михайловича Зубкова и 70-летию со дня рождения Владимира Алексеевича Ватутина, Труды МИАН, 316, МИАН, М., 2022, 169–194; Ion Grama, Quansheng Liu, Erwan Pin, “Convergence in $L^p$ for a Supercritical Multi-type Branching Process in a Random Environment”, Proc. Steklov Inst. Math., 316 (2022), 160–183
Zhang Sh., “On Large-Deviation Probabilities For the Empirical Distribution of Branching Random Walks With Heavy Tails”, J. Appl. Probab., 59:2 (2022), 471–494
Yingqiu Li, Xulan Huang, Zhaohui Peng, “Central Limit Theorem and Convergence Rates for a Supercritical Branching Process with Immigration in a Random Environment”, Acta Math Sci, 42:3 (2022), 957
Xulan Huang, Yingqiu Li, Kainan Xiang, “Berry–Esseen bound for a supercritical branching processes with immigration in a random environment”, Statistics & Probability Letters, 190 (2022), 109619
Gao Zh., Zhang X., “Exact Convergence Rate of the Local Limit Theorem For a Branching Random Walk in a Time-Dependent Random Environment on D-Dimensional Integer Lattice”, Commun. Stat.-Theory Methods, 2021
Xu Ya., Cao Q., “Global Asymptotic Stability For a Nonlinear Density-Dependent Mortality Nicholson'S Blowflies System Involving Multiple Pairs of Time-Varying Delays”, Adv. Differ. Equ., 2020:1 (2020), 123
Wang Yu., Liu Z., Liu Q., Li Y., “Asymptotic Properties of a Branching Random Walk With a Random Environment in Time”, Acta Math. Sci., 39:5 (2019), 1345–1362
Wang X., Huang Ch., “Convergence of Complex Martingale For a Branching Random Walk in a Time Random Environment”, Electron. Commun. Probab., 24 (2019), 41
Wang Yu., Li Y., Liu Q., Liu Z., “Quenched Weighted Moments of a Supercritical Branching Process in a Random Environment”, Asian J. Math., 23:6 (2019), 969–984
Zh. Gao, Q. Liu, “Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time”, Bernoulli, 24:1 (2018), 772–800
Ya. Wang, Q. Liu, “Limit theorems for a supercritical branching process with immigration in a random environment”, Sci. China-Math., 60:12 (2017), 2481–2502
Yu. Wang, Z. Liu, Y. Li, Q. Liu, “On the concept of subcriticality and criticality and a ratio theorem for a branching process in a random environment”, Stat. Probab. Lett., 127 (2017), 97–103
Zh. Gao, Q. Liu, “Exact convergence rates in central limit theorems for a branching random walk with a random environment in time”, Stoch. Process. Their Appl., 126:9 (2016), 2634–2664
Y. Q. Li, Q. S. Liu, Z. Q. Gao, H. S. Wang, “Asymptotic properties of supercritical branching processes in random environments”, Front. Math. China, 9:4 (2014), 737–751
Z. Q. Gao, Q. S. Liu, H. S. Wang, “Central limit theorems for a branching random walk with a random environment in time”, Acta Math. Sci. Ser. B Engl. Ed., 34:2 (2014), 501–512