Аннотация:
We consider nonlinear elliptic equations of the form −Δu=g(u)−Δu=g(u) in ΩΩ, u=0u=0 on ∂Ω∂Ω, and Hamiltonian-type systems of the form −Δu=g(v)−Δu=g(v) in ΩΩ, −Δv=f(u)−Δv=f(u) in ΩΩ, u=0u=0 and v=0v=0 on ∂Ω∂Ω, where ΩΩ is a bounded domain in R2 and f,g∈C(R) are superlinear nonlinearities. In two dimensions the maximal growth (=critical growth) of f and g (such that the problem can be treated variationally) is of exponential type, given by Pohozaev–Trudinger-type inequalities. We discuss existence and nonexistence results related to the critical growth for the equation and the system. A natural framework for such equations and systems is given by Sobolev spaces, which provide in most cases an adequate answer concerning the maximal growth involved. However, we will see that for the system in dimension 2, the Sobolev embeddings are not sufficiently fine to capture the true maximal growths. We will show that working in Lorentz spaces gives better results.
Образец цитирования:
B. Ruf, “On Elliptic Equations and Systems with Critical Growth in Dimension Two”, Функциональные пространства, теория приближений, нелинейный анализ, Сборник статей, Труды МИАН, 255, Наука, МАИК «Наука/Интерпериодика», М., 2006, 246–255; Proc. Steklov Inst. Math., 255 (2006), 234–243
\RBibitem{Ruf06}
\by B.~Ruf
\paper On Elliptic Equations and Systems with Critical Growth in Dimension Two
\inbook Функциональные пространства, теория приближений, нелинейный анализ
\bookinfo Сборник статей
\serial Труды МИАН
\yr 2006
\vol 255
\pages 246--255
\publ Наука, МАИК «Наука/Интерпериодика»
\publaddr М.
\mathnet{http://mi.mathnet.ru/tm267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2302835}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2006
\vol 255
\pages 234--243
\crossref{https://doi.org/10.1134/S0081543806040195}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846889953}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tm267
https://www.mathnet.ru/rus/tm/v255/p246
Эта публикация цитируется в следующих 4 статьяx:
Gurdev C. Anthal, Jacques Giacomoni, Konijeti Sreenadh, “A Choquard‐type equation with a singular absorption nonlinearity in two dimensions”, Math Methods in App Sciences, 46:4 (2023), 4510
Stapenhorst M.F., “A Singular Problem With Nonlinearities of Exponential Growth”, NoDea-Nonlinear Differ. Equ. Appl., 29:2 (2022), 16
Dwivedi G., Tyagi J., “Singular Adams inequality for biharmonic operator on Heisenberg Group and its applications”, NoDea-Nonlinear Differ. Equ. Appl., 23:6 (2016), 58
Albuquerque F.S.B., do O J.M., Medeiros E.S., “On a class of Hamiltonian elliptic systems involving unbounded or decaying potentials in dimension two”, Math. Nachr., 289:13 (2016), 1568–1584