|
Moment measures and stability for Gaussian inequalities
Alexander V. Kolesnikova, Egor D. Kosovb a National Research University "Higher School of Economics" Moscow, Russia
b Departament of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia; National Research University Higher School of Economics, Moscow, Russia
Аннотация:
Let γ be the standard Gaussian measure on Rn and let Pγ be the space of probability measures that are absolutely continuous with respect to γ. We study lower bounds for the functional Fγ(μ)=Ent(μ)−12W22(μ,ν), where μ∈Pγ,ν∈Pγ, Ent(μ)=∫log(μγ)dμ is the relative Gaussian entropy, and W2 is the quadratic Kantorovich distance. The minimizers of Fγ are solutions to a dimension-free Gaussian analog of the (real) Kähler–Einstein equation. We show that Fγ(μ) is bounded from below under the assumption that the Gaussian Fisher information of ν is finite and prove a priori estimates for the minimizers. Our approach relies on certain stability estimates for the Gaussian log-Sobolev and Talagrand transportation inequalities.
Ключевые слова:
Gaussian inequalities, optimal transportation, Kähler-Einstein equation, moment measure.
Образец цитирования:
Alexander V. Kolesnikov, Egor D. Kosov, “Moment measures and stability for Gaussian inequalities”, Theory Stoch. Process., 22(38):2 (2017), 47–61
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/thsp179 https://www.mathnet.ru/rus/thsp/v22/i2/p47
|
Статистика просмотров: |
Страница аннотации: | 213 | PDF полного текста: | 89 | Список литературы: | 34 |
|