|
Asymptotic formulas for probabilities of
large deviations of ladder heights
Sergey V. Nagaev Sobolev Institute of Mathematics, 4, Koptyug Pr., Novosibirsk 630090, Russia
Аннотация:
Asymptotic formulas for large-deviation probabilities of a ladder height in a random
walk generated by a sequence of sums of i.i.d. random variables are deduced.
Two cases are considered:
a) the distribution $F(x)$ of summands is normal with a zero mean.
b) $F(x)$ belongs to the domain of the normal attraction of a stable law with
the exponent $0 <\alpha< 1.$
The method of Laplace transforms is applied in proofs.
Ключевые слова:
Characteristic function, harmonic renewal measure, Karamata’s criterion,
ladder height, Laplace transform, slowly varying function, Spitzer series, Tauberian theorem.
Образец цитирования:
Sergey V. Nagaev, “Asymptotic formulas for probabilities of
large deviations of ladder heights”, Theory Stoch. Process., 14(30):1 (2008), 100–116
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/thsp134 https://www.mathnet.ru/rus/thsp/v14/i1/p100
|
Статистика просмотров: |
Страница аннотации: | 153 | PDF полного текста: | 56 | Список литературы: | 30 |
|