Аннотация:
Рассмотрено уравнение Лапласа в Rd−1×R+×(0,+∞) с динамическим нелинейным краевым условием порядка между 1 и 2. Краевое условие
представляет собой дифференциальное неравенство дробного порядка, включающее производные нецелого порядка и нелинейный источник. Установлены результаты об отсутствии решения и необходимые условия существования локального и глобального решений. В частности, доказано, что критический показатель зависит только от дробных производных наименьшего порядка.
Turmetov B., Nazarova K., “on Fractional Analogs of Dirichlet and Neumann Problems For the Laplace Equation”, Mediterr. J. Math., 16:3 (2019), 59
Ahmad B., Alsaedi A., Cuesta E., Kirane M., “On Blowing-Up Solutions For Multi-Time Nonlinear Hyperbolic Equations and Systems”, Filomat, 31:9 (2017), 2599–2609
Б. Х. Турметов, “О разрешимости одной краевой задачи для неоднородного полигармонического уравнения с граничным оператором дробного порядка”, Уфимск. матем. журн., 8:3 (2016), 160–175; B. Kh. Turmetov, “On solvability of a boundary value problem for an inhomogeneous polyharmonic equation with a fractional order boundary operator”, Ufa Math. J., 8:3 (2016), 155–170
Turmetov B. Koshanova M. Usmanov K., “Solvability of Boundary-Value Problems For Poisson Equations With Hadamard Type Boundary Operator”, Electron. J. Differ. Equ., 2016, 161
Turmetov B., “on Some Boundary Value Problems For Nonhomogenous Polyharmonic Equation With Boundary Operators of Fractional Order”, Acta Math. Sci., 36:3 (2016), 831–846
Torebek B.T., Turmetov B.Kh., “Questions on Solvability of Exterior Boundary Value Problems With Fractional Boundary Conditions”, Electron. J. Qual. Theory Differ., 2016, no. 25
Kadirkulov B.J. Kirane M., “on Solvability of a Boundary Value Problem For the Poisson Equation With a Nonlocal Boundary Operator”, Acta Math. Sci., 35:5 (2015), 970–980
Turmetov B.Kh., “Solvabilit of Fractional Analogues of the Neumann Problem For a Nonhomogeneous Biharmonic Equation”, Electron. J. Differ. Equ., 2015, 82
Torebek B.T., Turmetov B.Kh., “on Solvability of Exterior Boundary Value Problem With Fractional Boundary Condition”, Advancements in Mathematical Sciences (Ams 2015), AIP Conference Proceedings, 1676, eds. Ashyralyev A., Malkowsky E., Lukashov A., Basar F., Amer Inst Physics, 2015, 020096
Sadybekov M.A. Turmetov B.Kh. Torebek B.T., “Solvability of Nonlocal Boundary-Value Problems For the Laplace Equation in the Ball”, Electron. J. Differ. Equ., 2014, 157
Muratbekova M.A. Shinaliyev K.M. Turmetov B.K., “on Solvability of a Nonlocal Problem For the Laplace Equation With the Fractional-Order Boundary Operator”, Bound. Value Probl., 2014, 29
Berikbol T Torebek, Batirkhan K Turmetov, “On solvability of a boundary value problem for the Poisson equation with the boundary operator of a fractional order”, Bound Value Probl, 2013:1 (2013)
Tatar N.-e., “Mild and Classical Solutions to a Fractional Singular Second Order Evolution Problem”, Electron. J. Qual. Theory Differ., 2012, no. 91, 1–24
Laskri Ya., Tatar N.-e., “The critical exponent for an ordinary fractional differential problem”, Computers & Mathematics With Applications, 59:3 (2010), 1266–1270
Tatar N.-e., “Existence results for an evolution problem with fractional nonlocal conditions”, Computers & Mathematics With Applications, 60:11 (2010), 2971–2982