Аннотация:
Рассматривается обыкновенный дифференциальный оператор второго порядка с одним и тем же спектральным параметром в уравнении и в одном из граничных условий. Исследуется базисность в пространстве квадратично суммируемых функций системы собственных функций этого оператора.
Образец цитирования:
Н. Б. Керимов, В. С. Мирзоев, “О базисных свойствах одной спектральной задачи со спектральным параметром в граничном условии”, Сиб. матем. журн., 44:5 (2003), 1041–1045; Siberian Math. J., 44:5 (2003), 813–816
Ziyatkhan S. Aliyev, Nazim B. Kerimov, Vuqar A. Mehrabov, “On convergence of spectral expansions for the equation of a vibrating beam, at one end of which an elastically fixed inertial load is concentrated”, Journal of Mathematical Analysis and Applications, 546:2 (2025), 129349
Nazim Kerimov, Yagub Aliyev, Contemporary Mathematics, 798, Advances in Functional Analysis and Operator Theory, 2024, 1
N. Kapustin, A. Kholomeeva, “One Problem for the Bessel Equation with a Spectral Parameter in the Boundary Condition”, Lobachevskii J Math, 45:5 (2024), 2293
M. Sadybekov, B. Derbissaly, “Direct and Inverse Initial Boundary Value Problems for Heat Equation with Non-Classical Boundary Condition”, Lobachevskii J Math, 44:10 (2023), 4360
Bauyrzhan Derbissaly, Makhmud Sadybekov, “Tricomi Problem for Mixed Parabolic–Hyperbolic Equation with Higher Order Boundary Condition”, Bull. Iran. Math. Soc., 49:4 (2023)
Asim Ilyas, Salman A Malik, Summaya Saif, “On the solvability of direct and inverse problems for a generalized diffusion equation”, Phys. Scr., 98:12 (2023), 125221
Mehrabov V.A., “Oscillation and Basis Properties For the Equation of Vibrating Rod At One End of Which An Inertial Mass Is Concentrated”, Math. Meth. Appl. Sci., 44:2 (2021), 1585–1600
Mosazadeh S., “Inverse Sturm-Liouville Problems With Two Supplementary Discontinuous Conditions on Two Symmetric Disjoint Intervals”, Comput. Methods Differ. Equ., 9:1 (2021), 244–257
Yagub N. Aliyev, Operator Theory: Advances and Applications, 282, Operator Theory, Functional Analysis and Applications, 2021, 33
Moller M., “Minimality of Eigenfunctions and Associated Functions of Ordinary Differential Operators”, Adv. Oper. Theory, 5:3 (2020), 1014–1025
Aliyev Z.S., Kerimov N.B., Mehrabov V.A., “Convergence of Eigenfunction Expansions For a Boundary Value Problem With Spectral Parameter in the Boundary Conditions. i”, Differ. Equ., 56:2 (2020), 143–157
Mosazadeh S., Akbarfam A.J., “Inverse and Expansion Problems With Boundary Conditions Rationally Dependent on the Eigenparameter”, Bull. Iran Math. Soc., 46:1 (2020), 67–78
Maris E.A. Goktas S., “on the Spectral Properties of a Sturm-Liouville Problem With Eigenparameter in the Boundary Condition”, Hacet. J. Math. Stat., 49:4 (2020), 1373–1382
Tekin I., “Existence and Uniqueness of An Inverse Problem For a Wave Equation With Dynamic Boundary Condition”, TWMS J. Appl. Eng. Math., 10:2 (2020), 370–378
Bilalov B.T., Gasymov T.B., Maharramova G.V., “Basis Property of Eigenfunctions in Lebesgue Spaces For a Spectral Problem With a Point of Discontinuity”, Differ. Equ., 55:12 (2019), 1544–1553
Aliyev Z.S., Namazov F.M., “on the Spectral Problem Arising in the Mathematical Model of Bending Vibrations of a Homogeneous Rod”, Complex Anal. Oper. Theory, 13:8 (2019), 3675–3693
Kerimov N.B., “Basis Properties in l-P of a Sturm-Liouville Operator With Spectral Parameter in the Boundary Conditions”, Differ. Equ., 55:2 (2019), 149–158
A. Sh. Shukurov, “On the number of non-real eigenvalues of the Sturm–Liouville problem”, Eurasian Math. J., 8:3 (2017), 77–84
Ozkan A.S., “Sturm-Liouville Operator With Parameter-Dependent Boundary Conditions on Time Scales”, Electron. J. Differ. Equ., 2017, 212
Goktas S., Kerimov N.B., Maris E.A., “On the Uniform Convergence of Spectral Expansions For a Spectral Problem With a Boundary Condition Rationally Depending on the Eigenparameter”, J. Korean. Math. Soc., 54:4 (2017), 1175–1187