Аннотация:
В работе рассматриваются краевые задачи с различными условиями на чередующихся малых участках границы. Исследуется поведение решений таких задач при стремлении малого параметра, характеризующего период изменения типа граничных условий, к нулю и даются оценки отклонения этих решений от решений предельной задачи в различных случаях. На основе общих методов (см. [4], [9]) с единой точки зрения изучаются спектральные свойства этих задач.
Библиография: 20 названий.
Образец цитирования:
Г. А. Чечкин, “Усреднение краевых задач с сингулярным возмущением граничных условий”, Матем. сб., 184:6 (1993), 99–150; G. A. Chechkin, “Averaging of boundary value problems with a singular perturbation of the boundary conditions”, Russian Acad. Sci. Sb. Math., 79:1 (1994), 191–222
\RBibitem{Che93}
\by Г.~А.~Чечкин
\paper Усреднение краевых задач с~сингулярным возмущением граничных условий
\jour Матем. сб.
\yr 1993
\vol 184
\issue 6
\pages 99--150
\mathnet{http://mi.mathnet.ru/sm995}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1234592}
\zmath{https://zbmath.org/?q=an:0875.35009}
\transl
\by G.~A.~Chechkin
\paper Averaging of boundary value problems with a~singular perturbation of the~boundary conditions
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 79
\issue 1
\pages 191--222
\crossref{https://doi.org/10.1070/SM1994v079n01ABEH003608}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PP19200013}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm995
https://www.mathnet.ru/rus/sm/v184/i6/p99
Эта публикация цитируется в следующих 60 статьяx:
А. Г. Чечкина, “О задаче Зарембы для p-эллиптического уравнения”, Матем. сб., 214:9 (2023), 144–160; A. G. Chechkina, “On the Zaremba problem for the p-elliptic equation”, Sb. Math., 214:9 (2023), 1321–1336
Д. И. Борисов, “Операторные оценки в двумерных задачах с частой сменой в случае малых частей с условием Дирихле”, Тр. ИММ УрО РАН, 29:1 (2023), 36–55; D. I. Borisov, “Operator Estimates in Two-Dimensional Problems with a Frequent Alternation in the Case of Small Parts with the Dirichlet Condition”, Proc. Steklov Inst. Math. (Suppl.), 321:1 (2023), S33–S52
Д. Б. Давлетов, О. Б. Давлетов, Р. Р. Давлетова, А. А. Ершов, “Сходимость собственных элементов краевой задачи типа Стеклова для оператора Ламэ”, Тр. ИММ УрО РАН, 27, № 1, 2021, 37–47
Д. И. Борисов, “Асимптотический анализ краевых задач для оператора Лапласа с частой сменой типа граничных условий”, Дифференциальные уравнения с частными производными, СМФН, 67, № 1, Российский университет дружбы народов, М., 2021, 14–129
С. А. Назаров, Я. Таскинен, “Модель плоского деформированного состояния двумерной пластины с мелкими почти периодическими участками защемления края”, Математические вопросы теории распространения волн. 51, Зап. научн. сем. ПОМИ, 506, ПОМИ, СПб., 2021, 130–174
Ю. А. Алхутов, Г. А. Чечкин, “Повышенная суммируемость градиента решения задачи Зарембы для уравнения Пуассона”, Докл. РАН. Матем., информ., проц. упр., 497 (2021), 3–6; Yu. A. Alkhutov, G. A. Chechkin, “Increased integrability of the gradient of the solution to the Zaremba problem for the Poisson equation”, Dokl. Math., 103:2 (2021), 69–71
Chechkina A.G., D'Apice C., De Maio U., “Rate of Convergence of Eigenvalues to Singularly Perturbed Steklov-Type Problem For Elasticity System”, Appl. Anal., 98:1-2, SI (2019), 32–44
Durante T., “Homogenization of Elliptic Operators in a Strip Perforated Along a Curve”, AIP Conference Proceedings, 2116, ed. Simos T. Tsitouras C., Amer Inst Physics, 2019, 170006
A. V. Podolskiy, T. A. Shaposhnikova, “Homogenization of a Boundary Value Problem for the n-Laplace Operator on a n-Dimensional Domain with Rapidly Alternating Boundary Condition Type: The Critical Case”, Diff Equat, 55:4 (2019), 523
A. V. Podolskiy, T. A. Shaposhnikova, “Homogenization of the Boundary Value Problem for the Poisson Equation with Rapidly Oscillating Nonlinear Boundary Conditions: Space Dimension n ≥ 3, Critical Case”, Dokl. Math., 99:2 (2019), 160
А. Г. Чечкина, “Усреднение спектральных задач с сингулярным возмущением условия Стеклова”, Изв. РАН. Сер. матем., 81:1 (2017), 203–240; A. G. Chechkina, “Homogenization of spectral problems with singular perturbation of the Steklov condition”, Izv. Math., 81:1 (2017), 199–236
Т. Ф. Шарапов, “О резольвенте многомерных операторов с частой сменой краевых условий: критический случай”, Уфимск. матем. журн., 8:2 (2016), 66–96; T. F. Sharapov, “On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: critical case”, Ufa Math. J., 8:2 (2016), 65–94
Д. Б. Давлетов, Д. В. Кожевников, “Задача типа Стеклова в полуцилиндре с малым отверстием”, Уфимск. матем. журн., 8:4 (2016), 63–89; D. B. Davletov, D. V. Kozhevnikov, “The problem of Steklov type in a half-cylinder with a small cavity”, Ufa Math. J., 8:4 (2016), 62–87
Borisov D. Cardone G. Durante T., “Homogenization and norm-resolvent convergence for elliptic operators in a strip perforated along a curve”, Proc. R. Soc. Edinb. Sect. A-Math., 146:6 (2016), 1115–1158
“On Resolvent of Multi-Dimensional Operators With Frequent Alternation of Boundary Conditions: Critical Case”, Ufa Math. J., 8:2 (2016), 65–94
Р. Р. Гадыльшин, С. В. Репьевский, Е. А. Шишкина, “О собственном значении для лапласиана в круге с граничным условием Дирихле на малом участке границы в критическом случае”, Тр. ИММ УрО РАН, 21, № 1, 2015, 56–70; R. R. Gadyl'shin, S. V. Repjevskij, E. A. Shishkina, “On an eigenvalue for the Laplace operator in a disk with Dirichlet boundary condition on a small part of the boundary in a critical case”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 76–90
A. G. Chechkina, V. A. Sadovnichy, “Degeneration of Steklov–type boundary conditions in one spectral homogenization problem”, Eurasian Math. J., 6:3 (2015), 13–29
Т. Ф. Шарапов, “О резольвенте многомерных операторов с частой сменой краевых условий в случае усредненного условия Дирихле”, Матем. сб., 205:10 (2014), 125–160; T. F. Sharapov, “On the resolvent of multidimensional operators with frequently changing boundary conditions in the case of the homogenized Dirichlet condition”, Sb. Math., 205:10 (2014), 1492–1527
G.A. Chechkin, D. Cioranescu, A. Damlamian, A.L. Piatnitski, “On boundary value problem with singular inhomogeneity concentrated on the boundary”, Journal de Mathématiques Pures et Appliquées, 98:2 (2012), 115
Denis Borisov, Renata Bunoiu, Giuseppe Cardone, “Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics”, Z. Angew. Math. Phys, 2012