Аннотация:
Предлагается итерационный алгоритм приближенного восстановления для непереопределенной обратной
задачи рассеяния при фиксированной энергии E с неполными данными в размерности d⩾2. В частности, получены быстро сходящиеся приближенные восстановления для этой обратной задачи при E→+∞.
Библиография: 38 названий.
Образец цитирования:
Р. Г. Новиков, “Итерационный подход к непереопределенной обратной задаче рассеяния при фиксированной энергии”, Матем. сб., 206:1 (2015), 131–146; R. G. Novikov, “An iterative approach to non-overdetermined inverse scattering at fixed energy”, Sb. Math., 206:1 (2015), 120–134
\RBibitem{Nov15}
\by Р.~Г.~Новиков
\paper Итерационный подход к~непереопределенной обратной задаче рассеяния при фиксированной энергии
\jour Матем. сб.
\yr 2015
\vol 206
\issue 1
\pages 131--146
\mathnet{http://mi.mathnet.ru/sm8277}
\crossref{https://doi.org/10.4213/sm8277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3354965}
\zmath{https://zbmath.org/?q=an:1327.35444}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206..120N}
\elib{https://elibrary.ru/item.asp?id=23421601}
\transl
\by R.~G.~Novikov
\paper An iterative approach to non-overdetermined inverse scattering at fixed energy
\jour Sb. Math.
\yr 2015
\vol 206
\issue 1
\pages 120--134
\crossref{https://doi.org/10.1070/SM2015v206n01ABEH004449}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351527000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925238403}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm8277
https://doi.org/10.4213/sm8277
https://www.mathnet.ru/rus/sm/v206/i1/p131
Эта публикация цитируется в следующих 29 статьяx:
Roman Novikov, Basant Lal Sharma, “Inverse source problem for discrete Helmholtz equation”, Inverse Problems, 40:10 (2024), 105005
Thorsten Hohage, Roman G Novikov, Vladimir N Sivkin, “Phase retrieval and phaseless inverse scattering with background information”, Inverse Problems, 40:10 (2024), 105007
Vladimir N. Sivkin, “Approximate Lipschitz stability for phaseless inverse scattering with background information”, 2023
Dmitriev K. V., 2023 Days on Diffraction (DD), 2023, 40
Juan Antonio Barceló, Carlos Castro, Mari Cruz Vilela, “Live load matrix recovery from scattering data in linear elasticity”, Adv Comput Math, 49:6 (2023)
Roman G. Novikov, Springer Proceedings in Mathematics & Statistics, 385, Mathematical Analysis, its Applications and Computation, 2022, 75
Vo Anh Khoa, Bidney G.W., Klibanov V M., Nguyen L.H., Nguyen L.H., Sullivan A.J., Astratov V.N., “An Inverse Problem of a Simultaneous Reconstruction of the Dielectric Constant and Conductivity From Experimental Backscattering Data”, Inverse Probl. Sci. Eng., 29:5 (2021), 712–735
Novikov R.G., “Multipoint Formulas For Phase Recovering From Phaseless Scattering Data”, J. Geom. Anal., 31:2 (2021), 1965–1991
Tadi M., Radenkovic M., “New Computational Methods For Inverse Wave Scattering With a New Filtering Technique Inverse Wave Scattering”, Optim. Eng., 22:4 (2021), 2457–2479
M. V. Klibanov, V. A. Khoa, A. V. Smirnov, L. H. Nguyen, G. W. Bidney, L. H. Nguyen, A. J. Sullivan, V. N. Astratov, “Convexification Inversion Method for Nonlinear SAR Imaging with Experimentally Collected Data”, J. Appl. Ind. Math., 15:3 (2021), 413
R. G. Novikov, V. N. Sivkin, “Error estimates for phase recovering from phaseless scattering data”, Eurasian J. Math. Comput. Appl., 8:1 (2020), 44–61
Vo Anh Khoa, Bidney G.W., Klibanov V M., Nguyen L.H., Nguyen L.H., Sullivan A.J., Astratov V.N., “Convexification and experimental data for a 3D inverse scattering problem with the moving point source”, Inverse Probl., 36:8 (2020), 085007
A. D. Agaltsov, T. Hohage, R. G. Novikov, “Global uniqueness in a passive inverse problem of helioseismology”, Inverse Probl., 36:5 (2020), 055004
Vo Anh Khoa, Klibanov M.V., Loc Hoang Nguyen, “Convexification for a three-dimensional inverse scattering problem with the moving point source”, SIAM J. Imaging Sci., 13:2 (2020), 871–904
A. D. Agaltsov, R. G. Novikov, “Error estimates for phaseless inverse scattering in the born approximation at high energies”, J. Geom. Anal., 30:3, SI (2020), 2340–2360
A. D. Agaltsov, T. Hohage, R. G. Novikov, “An iterative approach to monochromatic phaseless inverse scattering”, Inverse Probl., 35:2 (2019), 024001
A. Hamad, M. Tadi, “Inverse scattering based on proper solution space”, J. Theor. Comput. Acoust., 27:3 (2019), 1850033
Dinh-Liem Nguyen, V M. Klibanov, L. H. Nguyen, M. A. Fiddy, “Imaging of buried objects from multi-frequency experimental data using a globally convergent inversion method”, J. Inverse Ill-Posed Probl., 26:4 (2018), 501–522
M. V. Klibanov, Dinh-Liem Nguyen, L. H. Nguyen, H. Liu, “A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data”, Inverse Probl. Imaging, 12:2 (2018), 493–523