Аннотация:
Строится теория общих краевых задач для эллиптических дифференциальных операторов, символы которых не обязательно удовлетворяют условиям Атья–Ботта обращения в нуль соответствующего препятствия. Вводится условие эллиптичности краевой задачи и доказывается соответствующая теорема конечности (фредгольмовости).
Библиография: 29 названий.
Образец цитирования:
Б. Ю. Стернин, В. Е. Шаталов, Б.-В. Шульц, “Об общих краевых задачах для эллиптических уравнений”, Матем. сб., 189:10 (1998), 145–159; B. Yu. Sternin, V. E. Shatalov, B. Schulze, “On general boundary-value problems for elliptic equations”, Sb. Math., 189:10 (1998), 1573–1586
\RBibitem{SteShaSch98}
\by Б.~Ю.~Стернин, В.~Е.~Шаталов, Б.-В.~Шульц
\paper Об общих краевых задачах для эллиптических уравнений
\jour Матем. сб.
\yr 1998
\vol 189
\issue 10
\pages 145--159
\mathnet{http://mi.mathnet.ru/sm357}
\crossref{https://doi.org/10.4213/sm357}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691299}
\zmath{https://zbmath.org/?q=an:0926.35033}
\transl
\by B.~Yu.~Sternin, V.~E.~Shatalov, B.~Schulze
\paper On general boundary-value problems for elliptic equations
\jour Sb. Math.
\yr 1998
\vol 189
\issue 10
\pages 1573--1586
\crossref{https://doi.org/10.1070/sm1998v189n10ABEH000357}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078221100014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0007150393}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm357
https://doi.org/10.4213/sm357
https://www.mathnet.ru/rus/sm/v189/i10/p145
Эта публикация цитируется в следующих 23 статьяx:
Seiler J., “Parametric Pseudodifferential Operators With Point-Singularity in the Covariable”, Ann. Glob. Anal. Geom., 61:3 (2022), 553–592
Alexandre Baldare, “A General Simonenko Local Principle and Fredholm Condition for Isotypical Components”, Results Math, 77:3 (2022)
Schulze B.-W., Seiler J., “Elliptic Complexes on Manifolds With Boundary”, J. Geom. Anal., 29:1 (2019), 656–706
Krainer T., Mendoza G.A., “Boundary value problems for first order elliptic wedge operators”, Am. J. Math., 138:3 (2016), 585–656
Jörg Seiler, “Parameter-dependent pseudodifferential operators of Toeplitz type”, Annali di Matematica, 2013
Timothy Nguyen, “Anisotropic function spaces and elliptic boundary value problems”, Math. Nachr, 2012, n/a
Jörg Seiler, “Ellipticity in pseudodifferential algebras of Toeplitz type”, Journal of Functional Analysis, 2012
Schulze B.-W., “Pseudo-differential calculus on manifolds with geometric singularities”, Pseudo-Differential Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Institute Communications, 52, 2007, 37–83
Schulze, BW, “Edge operators with conditions of Toeplitz type”, Journal of the Institute of Mathematics of Jussieu, 5:1 (2006), 101
Savin A., Sternin B., “Pseudo differential subspaces and their applications in elliptic theory”, C(star)-Algebras and Elliptic Theory, Trends in Mathematics, 2006, 247–289
Savin, A, “Boundary value problems on manifolds with fibered boundary”, Mathematische Nachrichten, 278:11 (2005), 1297
Schulze, BW, “Boundary value problems with global projection conditions”, Journal of Functional Analysis, 206:2 (2004), 449
B.-W. Schulze, Aspects of Boundary Problems in Analysis and Geometry, 2004, 342
Savin, A, “Elliptic operators in subspaces and the eta invariant”, K-Theory, 27:3 (2002), 253
Savin, AY, “To the problem of homotopy classification of the elliptic boundary value problems”, Doklady Mathematics, 63:2 (2001), 174
Schulze, BW, “An algebra of boundary value problems not requiring Shapiro-Lopatinskij conditions”, Journal of Functional Analysis, 179:2 (2001), 374
Savin A., Schulze B.W., Sternin B., “On the homotopy classification of elliptic boundary value problems”, Partial Differential Equations and Spectral Theory, Operator Theory : Advances and Applications, 126, 2001, 299–305
Schulze B.W., “Operator algebras with symbol hierarchies on manifolds with singularities”, Approaches to Singular Analysis - a Volume of Advances in Partial Differential Equations, Operator Theory : Advances and Applications, 125, 2001, 167–207
Anton Savin, Bert-Wolfgang Schulze, Boris Sternin, Partial Differential Equations and Spectral Theory, 2001, 299
B.-W. Schulze, Approaches to Singular Analysis, 2001, 167