Аннотация:
В статье описывается множество псевдоспектральных функций канонической системы дифференциальных уравнений:
dW(x,λ)dx=iλJH(x)W(x,λ),W(0,λ)=E2n,
где 0⩽x⩽l<∞, H(x)=H∗(x)⩾0, J=[0EnEn0].
В терминах гамильтонианов H(x) даются условия, при которых псевдоспектральные функции являются спектральными.
Образец цитирования:
А. Л. Сахнович, “Спектральные функции канонической системы 2n-го порядка”, Матем. сб., 181:11 (1990), 1510–1524; A. L. Sakhnovich, “Spectral functions of a canonical system of order 2n”, Math. USSR-Sb., 71:2 (1992), 355–369
\RBibitem{Sak90}
\by А.~Л.~Сахнович
\paper Спектральные функции канонической системы $2n$-го порядка
\jour Матем. сб.
\yr 1990
\vol 181
\issue 11
\pages 1510--1524
\mathnet{http://mi.mathnet.ru/sm1242}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1090913}
\zmath{https://zbmath.org/?q=an:0776.34066|0718.34112}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..71..355S}
\transl
\by A.~L.~Sakhnovich
\paper Spectral functions of a~canonical system of order~$2n$
\jour Math. USSR-Sb.
\yr 1992
\vol 71
\issue 2
\pages 355--369
\crossref{https://doi.org/10.1070/SM1992v071n02ABEH002131}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992HU58600006}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm1242
https://www.mathnet.ru/rus/sm/v181/i11/p1510
Эта публикация цитируется в следующих 24 статьяx:
Vadim Mogilevskii, “Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index”, J Math Sci, 229:1 (2018), 51
Vadim Mogilevskii, “Spectral and pseudospectral functions of various dimensions for symmetric systems”, J Math Sci, 221:5 (2017), 679
Stephen Clark, Fritz Gesztesy, Roger Nichols, Trends in Mathematics, Stochastic and Infinite Dimensional Analysis, 2016, 85
Henrik Winkler, Operator Theory, 2015, 525
Henrik Winkler, Operator Theory, 2014, 1
Alexander Sakhnovich, “Construction of the Solution of the Inverse Spectral Problem for a System Depending Rationally on the Spectral Parameter, Borg–Marchenko-Type Theorem and sine-Gordon Equation”, Integr. Equ. Oper. Theory, 2010
Stephen Clark, Petr Zemánek, “On a Weyl–Titchmarsh theory for discrete symplectic systems on a half line”, Applied Mathematics and Computation, 217:7 (2010), 2952
Damanik D. Killip R. Simon B., “Perturbations of Orthogonal Polynomials with Periodic Recursion Coefficients”, Ann. Math., 171:3 (2010), 1931–2010
Damir Z. Arov, Harry Dym, Recent Advances in Operator Theory and its Applications, 2005, 101
Steve Clark, Fritz Gesztesy, “On Weyl–Titchmarsh theory for singular finite difference Hamiltonian systems”, Journal of Computational and Applied Mathematics, 171:1-2 (2004), 151
Damir Z Arov, Harry Dym, “The bitangential inverse spectral problem for canonical systems”, Journal of Functional Analysis, 214:2 (2004), 312
Damir Z. Arov, Dym Harry, Current Trends in Operator Theory and its Applications, 2004, 79
Harry Dym, Reproducing Kernel Spaces and Applications, 2003, 171
Fritz Gesztesy, Lev A. Sakhnovich, Reproducing Kernel Spaces and Applications, 2003, 213
Alexander Sakhnovich, Inverse Probl, 18:2 (2002), 331
Gesztesy F. Kiselev A. Makarov K., “Uniqueness Results for Matrix-Valued Schrodinger, Jacobi, and Dirac-Type Operators”, Math. Nachr., 239 (2002), 103–145
Fritz Gesztesy, Eduard Tsekanovskii, “On Matrix-Valued Herglotz Functions”, Math Nachr, 218:1 (2000), 61
Fritz Gesztesy, Eduard Tsekanovskii, “On Matrix-Valued Herglotz Functions”, Math. Nachr., 218:1 (2000), 61
D. Z. Arov, Dynamical Systems, Control, Coding, Computer Vision, 1999, 27
I. Gohberg, M. A. Kaashoek, A. L. Sakhnovich, “Canonical Systems with Rational Spectral Densities: Explicit Formulas and Applications”, Math Nachr, 194:1 (1998), 93