Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Математический сборник
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Скоро в журнале
Архив
Импакт-фактор
Правила для авторов
Лицензионный договор
Загрузить рукопись
Историческая справка

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Матем. сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Математический сборник, 2024, том 215, номер 10, страницы 58–88
DOI: https://doi.org/10.4213/sm10081
(Mi sm10081)
 

Некоторые функционалы для случайных блужданий и критические ветвящиеся процессы в экстремально неблагоприятной среде

В. А. Ватутинa, К. Донгb, Е. Е. Дьяконоваa

a Математический институт им. В. А. Стеклова Российской академии наук, г. Москва
b Xidian University, Xi'an, P. R. China
Список литературы:
Аннотация: Пусть {Sn,n0} – случайное блуждание, распределение шага которого принадлежит без центрировки области притяжения устойчивого распределения индекса α, т.е. существует такая нормирующая последовательность констант an, что последовательность Sn/an, n=1,2,, слабо сходится при n к случайной величине, имеющей устойчивое распределение индекса α. Пусть S0=0,
Ln:=min
В предположении, что S_{n}\leqslant h(n), где функция h(n) имеет порядок o(a_{n}) при n\to\infty и \lim_{n\to \infty }h(n)\in [ -\infty,+\infty ] существует, доказан ряд предельных теорем, описывающих асимптотическое поведение функционалов вида
\mathbf{E}[ e^{\lambda S_{\tau _{n}}};\, S_{n}\leqslant h(n)], \qquad \lambda>0,
при n\to \infty . Полученные результаты используются при исследовании вероятности невырождения критического ветвящегося процесса, эволюционирующего в экстремально неблагоприятной среде.
Библиография: 15 названий.
Ключевые слова: устойчивые случайные блуждания, ветвящиеся процессы, вероятность невырождения, экстремальная случайная среда.
Финансовая поддержка Номер гранта
Министерство науки и высшего образования Российской Федерации 075-15-2022-265
Ministry of Science and Technology (MOST) of China G2022174007L
Исследование В. А. Ватутина выполнено в МЦМУ МИАН при финансовой поддержке Минобрнауки России (соглашение № 075-15-2022-265), а также Ministry of Science and Technology of the People's Republic of China (грант № G20221740071). Исследование К. Донга выполнено при поддержке Ministry of Science and Technology of the People's Republic of China (грант № G20221740071). Исследование Е. Е. Дьяконовой выполнено в МЦМУ МИАН при финансовой поддержке Минобрнауки России (соглашение № 075-15-2022-265).
Поступила в редакцию: 13.02.2024 и 01.07.2024
Англоязычная версия:
Sbornik: Mathematics, 2024, Volume 215, Issue 10, Pages 1321–1350
DOI: https://doi.org/10.4213/sm10081e
Реферативные базы данных:
Тип публикации: Статья
MSC: Primary 60G50; Secondary 60J80, 60K37
Образец цитирования: В. А. Ватутин, К. Донг, Е. Е. Дьяконова, “Некоторые функционалы для случайных блужданий и критические ветвящиеся процессы в экстремально неблагоприятной среде”, Матем. сб., 215:10 (2024), 58–88; V. A. Vatutin, C. Dong, E. E. Dyakonova, “Some functionals for random walks and critical branching processes in an extremely unfavourable random environment”, Sb. Math., 215:10 (2024), 1321–1350
Цитирование в формате AMSBIB
\RBibitem{VatDonDya24}
\by В.~А.~Ватутин, К.~Донг, Е.~Е.~Дьяконова
\paper Некоторые функционалы для случайных блужданий и критические ветвящиеся процессы в~экстремально неблагоприятной среде
\jour Матем. сб.
\yr 2024
\vol 215
\issue 10
\pages 58--88
\mathnet{http://mi.mathnet.ru/sm10081}
\crossref{https://doi.org/10.4213/sm10081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4849359}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024SbMat.215.1321V}
\transl
\by V.~A.~Vatutin, C.~Dong, E.~E.~Dyakonova
\paper Some functionals for random walks and critical branching processes in an extremely unfavourable random environment
\jour Sb. Math.
\yr 2024
\vol 215
\issue 10
\pages 1321--1350
\crossref{https://doi.org/10.4213/sm10081e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001406213400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85216121600}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sm10081
  • https://doi.org/10.4213/sm10081
  • https://www.mathnet.ru/rus/sm/v215/i10/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Статистика просмотров:
    Страница аннотации:280
    PDF русской версии:11
    PDF английской версии:13
    HTML русской версии:27
    HTML английской версии:85
    Список литературы:23
    Первая страница:5
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025