Аннотация:
We contend that what are called Linear Canonical Transforms (LCTs) should be seen as a part of the theory of unitary irreducible representations of the `2+1' Lorentz group. The integral kernel representation found by Collins, Moshinsky and Quesne, and the radial and hyperbolic LCTs introduced thereafter, belong to the discrete and continuous representation series of the Lorentz group in its parabolic subgroup reduction. The reduction by the elliptic and hyperbolic subgroups can also be considered to yield LCTs that act on functions, discrete or continuous in other Hilbert spaces. We gather the summation and integration kernels reported by Basu and Wolf when studiying all discrete, continuous, and mixed representations of the linear group of 2×2 real matrices. We add some comments on why all should be considered canonical.
Ключевые слова:
linear transforms, canonical transforms, Lie group Sp$(2,R)$.
Поступила:24 апреля 2012 г.; в окончательном варианте 1 июня 2012 г.; опубликована 6 июня 2012 г.
\RBibitem{Wol12}
\by Kurt Bernardo Wolf
\paper A top-down account of linear canonical transforms
\jour SIGMA
\yr 2012
\vol 8
\papernumber 033
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma710}
\crossref{https://doi.org/10.3842/SIGMA.2012.033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2942806}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000304852000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84882439532}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma710
https://www.mathnet.ru/rus/sigma/v8/p33
Эта публикация цитируется в следующих 7 статьяx:
Ravo Tokiniaina Ranaivoson, Raoelina Andriambololona, Hanitriarivo Rakotoson, Rivo Herivola Manjakamanana Ravelonjato, “Invariant quadratic operators associated with linear canonical transformations and their eigenstates”, J. Phys. Commun., 6:9 (2022), 095010
Ranaivoson R.T., Andriambololona R., Rakotoson H., Raboanary R., “Linear Canonical Transformations in Relativistic Quantum Physics”, Phys. Scr., 96:6 (2021), 065204
R. Andriambololona, R. T. Ranaivoson, H. D. E. Randriamisy, H. Rakotoson, “Dispersion operators algebra and linear canonical transformations”, Int. J. Theor. Phys., 56:4 (2017), 1258–1273
Arik S.O., Ozaktas H.M., “Optimal Representation and Processing of Optical Signals in Quadratic-Phase Systems”, Opt. Commun., 366 (2016), 17–21
K. B. Wolf, “Development of linear canonical transforms: A historical sketch”, Linear Canonical Transforms, Springer Series in Optical Sciences, 198, eds. J. Healy, M. Kutay, H. Ozaktas, J. Sheridan, Springer-Verlag Berlin, 2016, 3–28
B. Mielnik, “Quantum control: discovered, repeated and reformulated ideas mark the progress”, 8th International Symposium on Quantum Theory and Symmetries (QTS8), Journal of Physics Conference Series, 512, IOP Publishing Ltd, 2014, 012035
Mielnik B., “Quantum Operations: Technical Or Fundamental Challenge?”, J. Phys. A-Math. Theor., 46:38 (2013), 385301