Аннотация:
In the first part of the paper we describe the complex geometry of the universal Teichmüller space $\mathcal T$, which may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The quotient $\mathcal S$ of the diffeomorphism group of the circle modulo Möbius transformations may be treated as a smooth part of $\mathcal T$. In the second part we consider the quantization of universal Teichmüller space $\mathcal T$. We explain first how to quantize the smooth part $\mathcal S$ by embedding it into a Hilbert–Schmidt Siegel disc. This quantization method, however, does not apply to the whole universal Teichmüller space $\mathcal T$, for its quantization we use an approach, due to Connes.
Образец цитирования:
Armen G. Sergeev, “The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space”, SIGMA, 5 (2009), 015, 20 pp.
\RBibitem{Ser09}
\by Armen G.~Sergeev
\paper The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichm\"uller Space
\jour SIGMA
\yr 2009
\vol 5
\papernumber 015
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma361}
\crossref{https://doi.org/10.3842/SIGMA.2009.015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2481477}
\zmath{https://zbmath.org/?q=an:1165.53379}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896058806}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma361
https://www.mathnet.ru/rus/sigma/v5/p15
Эта публикация цитируется в следующих 4 статьяx:
А. Г. Сергеев, “Квантование соболевского пространства полудифференцируемых функций”, Матем. сб., 207:10 (2016), 96–104; A. G. Sergeev, “Quantization of the Sobolev space of half-differentiable functions”, Sb. Math., 207:10 (2016), 1450–1457
А. Г. Сергеев, “Лекции об универсальном пространстве Тейхмюллера”, Лекц. курсы НОЦ, 21, МИАН, М., 2013, 3–130
А. Ю. Васильев, А. Г. Сергеев, “Классические и квантовые пространства Тейхмюллера”, УМН, 68:3(411) (2013), 39–110; A. Yu. Vasiliev, A. G. Sergeev, “Classical and quantum Teichmüller spaces”, Russian Math. Surveys, 68:3 (2013), 435–502
Bonsante F., Schlenker J.-M., “Maximal surfaces and the universal Teichmüller space”, Invent. Math., 182:2 (2010), 279–333