Loading [MathJax]/jax/output/CommonHTML/jax.js
Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2025, том 21, 013, 61 стр.
DOI: https://doi.org/10.3842/SIGMA.2025.013
(Mi sigma2130)
 

Modular Exercises for Four-Point Blocks – I

Miranda C.N. Chenga, Terry Gannonb, Guglielmo Lockhartcd

a Korteweg–de Vries Institute for Mathematics and Institute of Physics, University of Amsterdam, Amsterdam, The Netherlands
b Department of Mathematics, University of Alberta, Canada
c CERN, Theory Department, Geneva, Switzerland
d Institute of Physics, University of Amsterdam, The Netherlands
Список литературы:
Аннотация: The well-known modular property of the torus characters and torus partition functions of (rational) vertex operator algebras (VOAs) and 2d conformal field theories (CFTs) has been an invaluable tool for studying this class of theories. In this work we prove that sphere four-point chiral blocks of rational VOAs are vector-valued modular forms for the groups Γ(2), Γ0(2), or SL2(Z). Moreover, we prove that the four-point correlators, combining the holomorphic and anti-holomorphic chiral blocks, are modular invariant. In particular, in this language the crossing symmetries are simply modular symmetries. This gives the possibility of exploiting the available techniques and knowledge about modular forms to determine or constrain the physically interesting quantities such as chiral blocks and fusion coefficients, which we illustrate with a few examples. We also highlight the existence of a sphere-torus correspondence equating the sphere quantities of certain theories Ts with the torus quantities of another family of theories Tt. A companion paper will delve into more examples and explore more systematically this sphere-torus duality.
Ключевые слова: conformal field theory, vertex operator algebras, modularity.
Финансовая поддержка Номер гранта
EU Framework Programme for Research and Innovation
Marie Sklodowska-Curie Actions 708045
European Research Council 640159
Netherlands Organization for Scientific Research 016.Vidi.189.182
Natural Sciences and Engineering Research Council of Canada (NSERC)
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 708045. The work of M.C. and G.L. is supported by ERC starting grant H2020 #640159. The work of M.C. has also received support from NWO vidi grant (number 016.Vidi.189.182). The work of T.G. is supported by an NSERC Discovery grant.
Поступила: 8 мая 2024 г.; в окончательном варианте 12 февраля 2025 г.; опубликована 28 февраля 2025 г.
Тип публикации: Статья
MSC: 81T40, 17B69, 11F03
Язык публикации: английский
Образец цитирования: Miranda C.N. Cheng, Terry Gannon, Guglielmo Lockhart, “Modular Exercises for Four-Point Blocks – I”, SIGMA, 21 (2025), 013, 61 pp.
Цитирование в формате AMSBIB
\RBibitem{CheGanLoc25}
\by Miranda~C.N.~Cheng, Terry~Gannon, Guglielmo~Lockhart
\paper Modular Exercises for Four-Point Blocks~--~I
\jour SIGMA
\yr 2025
\vol 21
\papernumber 013
\totalpages 61
\mathnet{http://mi.mathnet.ru/sigma2130}
\crossref{https://doi.org/10.3842/SIGMA.2025.013}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma2130
  • https://www.mathnet.ru/rus/sigma/v21/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:31
    PDF полного текста:7
    Список литературы:6
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025