|
Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval–Plancherel-Type Formulas under Subgroups
Ryosuke Nakahamaab a NTT Institute for Fundamental Mathematics, NTT Communication Science Laboratories,
Nippon Telegraph and Telephone Corporation,
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan
b Institute of Mathematics for Industry, Kyushu University,
744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
Аннотация:
Let (G,G1)=(G,(Gσ)0) be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces D1=G1/K1⊂D=G/K, realized as bounded symmetric domains in complex vector spaces p+1:=(p+)σ⊂p+ respectively. Then the universal covering group ˜G of G acts unitarily on the weighted Bergman space Hλ(D)⊂O(D)=Oλ(D) on D for sufficiently large λ. Its restriction to the subgroup ˜G1 decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua–Kostant–Schmid–Kobayashi's formula in terms of the ˜K1-decomposition of the space P(p+2) of polynomials on p+2:=(p+)−σ⊂p+. The object of this article is to understand the decomposition of the restriction Hλ(D)|˜G1 by studying the weighted Bergman inner product on each ˜K1-type in P(p+2)⊂Hλ(D). For example, by computing explicitly the norm ‖f‖λ for
f=f(x2)∈P(p+2), we can determine the Parseval–Plancherel-type formula for the decomposition of Hλ(D)|˜G1. Also, by computing the poles of
⟨f(x2),e(x|¯z)p+⟩λ,x
for f(x2)∈P(p+2), x=(x1,x2),
z∈p+=p+1⊕p+2,
we can get some information on branching of Oλ(D)|˜G1 also for λ in non-unitary range. In this article we consider these problems for all ˜K1-types in P(p+2).
Ключевые слова:
weighted Bergman spaces, holomorphic discrete series representations, branching laws, Parseval–Plancherel-type formulas, highest weight modules.
Поступила: 21 сентября 2022 г.; в окончательном варианте 26 июня 2023 г.; опубликована 21 июля 2023 г.
Образец цитирования:
Ryosuke Nakahama, “Computation of Weighted Bergman Inner Products on Bounded Symmetric Domains and Parseval–Plancherel-Type Formulas under Subgroups”, SIGMA, 19 (2023), 049, 74 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1944 https://www.mathnet.ru/rus/sigma/v19/p49
|
Статистика просмотров: |
Страница аннотации: | 75 | PDF полного текста: | 17 | Список литературы: | 20 |
|