Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



SIGMA:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Symmetry, Integrability and Geometry: Methods and Applications, 2023, том 19, 009, 82 стр.
DOI: https://doi.org/10.3842/SIGMA.2023.009
(Mi sigma1904)
 

Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)

Quantum Curves, Resurgence and Exact WKB

Murad Alima, Lotte Hollandsb, Iván Tullia

a Fachbereich Mathematik, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany
b Department of Mathematics at Heriot-Watt University, Maxwell Institute for Mathematical Sciences, Edinburgh EH14 4AS, UK
Список литературы:
Аннотация: We study the non-perturbative quantum geometry of the open and closed topological string on the resolved conifold and its mirror. Our tools are finite difference equations in the open and closed string moduli and the resurgence analysis of their formal power series solutions. In the closed setting, we derive new finite difference equations for the refined partition function as well as its Nekrasov–Shatashvili (NS) limit. We write down a distinguished analytic solution for the refined difference equation that reproduces the expected non-perturbative content of the refined topological string. We compare this solution to the Borel analysis of the free energy in the NS limit. We find that the singularities of the Borel transform lie on infinitely many rays in the Borel plane and that the Stokes jumps across these rays encode the associated Donaldson–Thomas invariants of the underlying Calabi–Yau geometry. In the open setting, the finite difference equation corresponds to a canonical quantization of the mirror curve. We analyze this difference equation using Borel analysis and exact WKB techniques and identify the 5d BPS states in the corresponding exponential spectral networks. We furthermore relate the resurgence analysis in the open and closed setting. This guides us to a five-dimensional extension of the Nekrasov–Rosly–Shatashvili proposal, in which the NS free energy is computed as a generating function of qq-difference opers in terms of a special set of spectral coordinates. Finally, we examine two spectral problems describing the corresponding quantum integrable system.
Ключевые слова: resolved conifold, topological string theory, Borel summation, difference equations, exponential spectral networks.
Финансовая поддержка Номер гранта
Deutsche Forschungsgemeinschaft 390833306
AL 1407/2-1
Royal Society
The work of I.T. is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2121 Quantum Universe 390833306. The work of L.H. is supported by a Royal Society Dorothy Hodgkin Fellowship. The work of M.A. is supported through the DFG Emmy Noether grant AL 1407/2-1.
Поступила: 9 июня 2022 г.; в окончательном варианте 8 февраля 2023 г.; опубликована 6 марта 2023 г.
Реферативные базы данных:
Тип публикации: Статья
MSC: 40G10, 39A70, 81T30
Язык публикации: английский
Образец цитирования: Murad Alim, Lotte Hollands, Iván Tulli, “Quantum Curves, Resurgence and Exact WKB”, SIGMA, 19 (2023), 009, 82 pp.
Цитирование в формате AMSBIB
\RBibitem{AliHolTul23}
\by Murad~Alim, Lotte~Hollands, Iv\'an~Tulli
\paper Quantum Curves, Resurgence and Exact WKB
\jour SIGMA
\yr 2023
\vol 19
\papernumber 009
\totalpages 82
\mathnet{http://mi.mathnet.ru/sigma1904}
\crossref{https://doi.org/10.3842/SIGMA.2023.009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4555591}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sigma1904
  • https://www.mathnet.ru/rus/sigma/v19/p9
  • Эта публикация цитируется в следующих 8 статьяx:
    1. Luca Cassia, Pietro Longhi, Maxim Zabzine, “Symplectic Cuts and Open/Closed Strings I”, Commun. Math. Phys., 406:1 (2025)  crossref
    2. Jie Gu, Amir-Khian Kashani-Poor, Albrecht Klemm, Marcos Mariño, “Non-perturbative topological string theory on compact Calabi-Yau 3-folds”, SciPost Phys., 16:3 (2024)  crossref
    3. Sergey Alexandrov, Marcos Mariño, Boris Pioline, “Resurgence of Refined Topological Strings and Dual Partition Functions”, SIGMA, 20 (2024), 073, 34 pp.  mathnet  crossref
    4. Kunal Gupta, Pietro Longhi, “Vortices on cylinders and warped exponential networks”, Lett Math Phys, 114:5 (2024)  crossref
    5. Alba Grassi, Qianyu Hao, Andrew Neitzke, “Exponential Networks, WKB and Topological String”, SIGMA, 19 (2023), 064, 44 pp.  mathnet  crossref
    6. Jie Gu, Marcos Mariño, “Exact multi-instantons in topological string theory”, SciPost Phys., 15:4 (2023)  crossref
    7. Jie Gu, Marcos Mariño, “On the resurgent structure of quantum periods”, SciPost Phys., 15:1 (2023)  crossref
    8. Fabrizio Del Monte, Pietro Longhi, “The threefold way to quantum periods: WKB, TBA equations and q-Painlevé”, SciPost Phys., 15:3 (2023)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Статистика просмотров:
    Страница аннотации:121
    PDF полного текста:32
    Список литературы:31
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025