Аннотация:
A multidomain spectral approach for Painlevé transcendents on unbounded domains is presented. This method is designed to study solutions determined uniquely by a, possibly divergent, asymptotic series valid near infinity in a sector and approximates the solution on straight lines lying entirely within said sector without the need of evaluating truncations of the series at any finite point. The accuracy of the method is illustrated for the example of the tritronquée solution to the Painlevé I equation.
This work was partially supported by the PARI and FEDER programs in 2016 and 2017, by the ANR-FWF project ANuI and by the Marie-Curie RISE network IPaDEGAN.
Поступила:18 апреля 2018 г.; в окончательном варианте 2 июля 2018 г.; опубликована 12 июля 2018 г.
Образец цитирования:
Christian Klein, Nikola Stoilov, “Numerical Approach to Painlevé Transcendents on Unbounded Domains”, SIGMA, 14 (2018), 068, 10 pp.
S. Crespo, M. Fasondini, C. Klein, N. Stoilov, C. Vallee, “Multidomain spectral method for the Gauss hypergeometric function”, Numer. Algorithms, 84:1 (2020), 1–35
Peter A. Clarkson, “Open Problems for Painlevé Equations”, SIGMA, 15 (2019), 006, 20 pp.