Аннотация:
We study the supersymmetric index of four dimensional theories obtained by compactifications of the six dimensional E string theory on a Riemann surface. In particular we derive the difference operator introducing certain class of surface defects to the index computation. The difference operator turns out to be, up to a constant shift, an analytic difference operator discussed by van Diejen.
Образец цитирования:
Belal Nazzal, Shlomo S. Razamat, “Surface Defects in E-String Compactifications and the van Diejen Model”, SIGMA, 14 (2018), 036, 20 pp.
\RBibitem{NazRaz18}
\by Belal~Nazzal, Shlomo~S.~Razamat
\paper Surface Defects in E-String Compactifications and the van Diejen Model
\jour SIGMA
\yr 2018
\vol 14
\papernumber 036
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma1335}
\crossref{https://doi.org/10.3842/SIGMA.2018.036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430309800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045747077}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1335
https://www.mathnet.ru/rus/sigma/v14/p36
Эта публикация цитируется в следующих 21 статьяx:
Anton Nedelin, Springer Proceedings in Mathematics & Statistics, 473, Lie Theory and Its Applications in Physics, 2025, 239
Shlomo S. Razamat, Evyatar Sabag, Orr Sela, Gabi Zafrir, “Aspects of 4d supersymmetric dynamics and geometry”, SciPost Phys. Lect. Notes, 2024
Belal Nazzal, Anton Nedelin, “$C_2$ generalization of the van Diejen model from the minimal $(D_5,D_5)$ conformal matter”, Lett Math Phys, 113:5 (2023)
Bruno Le Floch, “A slow review of the AGT correspondence”, J. Phys. A: Math. Theor., 55:35 (2022), 353002
Belal Nazzal, Anton Nedelin, Shlomo Razamat, “Minimal $(D,D)$ conformal matter and generalizations of the van Diejen model”, SciPost Phys., 12:4 (2022)
J. Chen, B. Haghighat, H.-Ch. Kim, M. Sperling, X. Wang, “E-string quantum curve”, Nucl. Phys. B, 973 (2021), 115602
J. Chen, B. Haghighat, H.-Ch. Kim, M. Sperling, “Elliptic quantum curves of class $\mathcal{S}_k$”, J. High Energy Phys., 2021, no. 3, 28
Hjalmar Rosengren, Michael J. Schlosser, “Multidimensional Matrix Inversions and Elliptic Hypergeometric Series on Root Systems”, SIGMA, 16 (2020), 088, 21 pp.
S. Ruijsenaars, “On razamat'sa(2)anda(3)kernel identities”, J. Phys. A-Math. Theor., 53:33 (2020), 334002
W. He, “Spectra of elliptic potentials and supersymmetric gauge theories”, J. High Energy Phys., 2020, no. 8, 070
Sh. S. Razamat, E. Sabag, “Sqcd and pairs of pants”, J. High Energy Phys., 2020, no. 9, 28
L. Cassia, R. Lodin, M. Zabzine, “On matrix models and their q-deformations”, J. High Energy Phys., 2020, no. 10, 126
Sh. S. Razamat, E. Sabag, “Sequences of 6D scfts on generic Riemann surfaces”, J. High Energy Phys., 2020, no. 1, 086
L. Bhardwaj, “Revisiting the Classifications of 6D Scfts and Lsts”, J. High Energy Phys., 2020, no. 3, 171
Sh. S. Razamat, E. Sabag, G. Zafrir, “Weakly coupled conformal manifolds in 4D”, J. High Energy Phys., 2020, no. 6, 179
S.-S. Kim, Yu. Sugimoto, F. Yagi, “Surface defects on e-string from 5-brane webs”, J. High Energy Phys., 2020, no. 12, 183
T. Nishinaka, Sh. Sasa, R.-D. Zhu, “On the correspondence between surface operators in argyres-douglas theories and modules of chiral algebra”, J. High Energy Phys., 2019, no. 3, 091
Sh. S. Razamat, “Flavored surface defects in 4D N=1 scfts”, Lett. Math. Phys., 109:6 (2019), 1377–1395
M. Fluder, P. Longhi, “An infrared bootstrap of the schur index with surface defects”, J. High Energy Phys., 2019, no. 9, 062
Del Zotto M., Lockhart G., “Universal Features of Bps Strings in Six-Dimensional Scfts”, J. High Energy Phys., 2018, no. 8, 173