Аннотация:
In this paper we present a novel construction of non-homogeneous hydrodynamic equations from what we call quasi-Stäckel systems, that is non-commutatively integrable systems constructed from appropriate maximally superintegrable Stäckel systems. We describe the relations between Poisson algebras generated by quasi-Stäckel Hamiltonians and the corresponding Lie algebras of vector fields of non-homogeneous hydrodynamic systems. We also apply Stäckel transform to obtain new non-homogeneous equations of considered type.
Образец цитирования:
Krzysztof Marciniak, Maciej Błaszak, “Non-Homogeneous Hydrodynamic Systems and Quasi-Stäckel Hamiltonians”, SIGMA, 13 (2017), 077, 15 pp.
Blaszak M., Marciniak K., Domanski Z., “Systematic Construction of Nonautonomous Hamiltonian Equations of Painleve Type. i. Frobenius Integrability”, Stud. Appl. Math., 2022
M. Blaszak, K. Marciniak, A. Sergyeyev, “Deforming Lie algebras to Frobenius integrable nonautonomous Hamiltonian systems”, Rep. Math. Phys., 87:2 (2021), 249–263
M. Blaszak, “Non-autonomous Henon-Heiles system from Painleve class”, Phys. Lett. A, 383:18 (2019), 2149–2152