Аннотация:
In our previous paper [Comm. Math. Phys.330 (2014), 367–399] we described the asymptotic behaviour of trajectories of the full symmetric sln Toda lattice in the case of distinct eigenvalues of the Lax matrix. It turned out that it is completely determined by the Bruhat order on the permutation group. In the present paper we extend this result to the case when some eigenvalues of the Lax matrix coincide. In that case the trajectories are described in terms of the projection to a partial flag space where the induced dynamical system verifies the same properties as before: we show that when t→±∞ the trajectories of the induced dynamical system converge to a finite set of points in the partial flag space indexed by the Schubert cells so that any two points of this set are connected by a trajectory if and only if the corresponding cells are adjacent. This relation can be explained in terms of the Bruhat order on multiset permutations.
Ключевые слова:
full symmetric Toda lattice; Bruhat order; integrals and semi-invariants; partial flag space; Morse function; multiset permutation.
The work of Yu.B. Chernyakov was supported by grant RFBR-15-01-08462. The work of G.I. Sharygin was supported by grant RFBR-15-01-05990. The work of A.S. Sorin was partially supported by RFBR grants 15-52-05022-Arm-a and 16-52-12012-NNIO-a.
Поступила:15 февраля 2016 г.; в окончательном варианте 10 августа 2016 г.; опубликована 20 августа 2016 г.
Образец цитирования:
Yury B. Chernyakov, Georgy I. Sharygin, Alexander S. Sorin, “Bruhat Order in the Full Symmetric sln Toda Lattice on Partial Flag Space”, SIGMA, 12 (2016), 084, 25 pp.
\RBibitem{CheShaSor16}
\by Yury~B.~Chernyakov, Georgy~I.~Sharygin, Alexander~S.~Sorin
\paper Bruhat Order in the Full Symmetric $\mathfrak{sl}_n$ Toda Lattice on Partial Flag Space
\jour SIGMA
\yr 2016
\vol 12
\papernumber 084
\totalpages 25
\mathnet{http://mi.mathnet.ru/sigma1166}
\crossref{https://doi.org/10.3842/SIGMA.2016.084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000383276800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84984856784}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1166
https://www.mathnet.ru/rus/sigma/v12/p84
Эта публикация цитируется в следующих 3 статьяx:
Ю. Черняков, С. Харчев, А. Левин, М. Ольшанецкий, А. Зотов, “Обобщенные модели Калоджеро и Тоды”, Письма в ЖЭТФ, 109:2 (2019), 131–138; Yu. Chernyakov, S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Generalized Calogero and Toda models”, JETP Letters, 109:2 (2019), 136–143
Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, “Bruhat order in the Toda system on so(2,4): an example of non-split real form”, J. Geom. Phys., 136 (2019), 45–51
А. С. Сорин, Ю. Б. Черняков, Г. И. Шарыгин, “Фазовый портрет полной симметричной системы Тоды на группах ранга 2”, ТМФ, 193:2 (2017), 193–213; A. S. Sorin, Yu. B. Chernyakov, G. I. Sharygin, “Phase portraits of the full symmetric Toda systems on rank-2 groups”, Theoret. and Math. Phys., 193:2 (2017), 1574–1592