Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)
On Some Quadratic Algebras I 12: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss–Catalan, Universal Tutte and Reduced Polynomials
Аннотация:
We study some combinatorial and algebraic properties of certain quadratic algebras related with dynamical classical and classical Yang–Baxter equations.
Ключевые слова:
braid and Yang–Baxter groups; classical and dynamical Yang–Baxter relations; classical Yang–Baxter, Kohno–Drinfeld and 3-term relations algebras; Dunkl, Gaudin and Jucys–Murphy elements; small quantum cohomology and K-theory of flag varieties; Pieri rules; Schubert, Grothendieck, Schröder, Ehrhart, Chromatic, Tutte and Betti polynomials; reduced polynomials; Chan–Robbins–Yuen polytope; k-dissections of a convex (n+k+1)-gon, Lagrange inversion formula and Richardson permutations; multiparameter deformations of Fuss–Catalan and Schröder polynomials; Motzkin, Riordan, Fine, poly-Bernoulli and Stirling numbers; Euler numbers and Brauer algebras; VSASM and CSTCPP; Birman–Ko–Lee monoid; Kronecker elliptic sigma functions.
Поступила:23 марта 2015 г.; в окончательном варианте 27 декабря 2015 г.; опубликована 5 января 2016 г.
Образец цитирования:
Anatol N. Kirillov, “On Some Quadratic Algebras I 12: Combinatorics of Dunkl and Gaudin Elements, Schubert, Grothendieck, Fuss–Catalan, Universal Tutte and Reduced Polynomials”, SIGMA, 12 (2016), 002, 172 pp.