|
On a Quantization of the Classical θ-Functions
Yurii V. Brezhnev Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
Аннотация:
The Jacobi theta-functions admit a definition through the autonomous differential equations (dynamical system); not only through the famous Fourier theta-series. We study this system in the framework of Hamiltonian dynamics and find corresponding Poisson brackets. Availability of these ingredients allows us to state the problem of a canonical quantization to these equations and disclose some important problems. In a particular case the problem is completely solvable in the sense that spectrum of the Hamiltonian can be found. The spectrum is continuous, has a band structure with infinite number of lacunae, and is determined by the Mathieu equation: the Schrödinger equation with a periodic cos-type potential.
Ключевые слова:
Jacobi theta-functions; dynamical systems; Poisson brackets; quantization; spectrum of Hamiltonian.
Поступила: 31 января 2015 г.; в окончательном варианте 17 апреля 2015 г.; опубликована 28 апреля 2015 г.
Образец цитирования:
Yurii V. Brezhnev, “On a Quantization of the Classical θ-Functions”, SIGMA, 11 (2015), 035, 11 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma1016 https://www.mathnet.ru/rus/sigma/v11/p35
|
Статистика просмотров: |
Страница аннотации: | 186 | PDF полного текста: | 63 | Список литературы: | 43 |
|