Аннотация:
We study positive preorders relative to computable reducibility. An approach is suggested to lift well-known notions from the theory of ceers to positive preorders. It is shown that each class of positive preoders of a special type (precomplete, e-complete, weakly precomplete, effectively finite precomplete, and effectively inseparable ones) contains infinitely many incomparable elements and has a universal object. We construct a pair of incomparable dark positive preorders that possess an infimum. It is shown that for every non-universal positive preorder P, there are infinitely many pairwise incomparable minimal weakly precomplete positive preorders that are incomparable with P.
Образец цитирования:
S. A. Badaev, B. S. Kalmurzayev, N. K. Mukash, A. A. Khamitova, “Special classes of positive preorders”, Сиб. электрон. матем. изв., 18:2 (2021), 1657–1666
Б. С. Калмурзаев, Н. А. Баженов, Д. Б. Алиш, “Об универсальных позитивных графах”, Сиб. матем. журн., 64:1 (2023), 98–112; B. S. Kalmurzaev, N. A. Bazhenov, D. B. Alish, “On universal positive graphs”, Siberian Math. J., 64:1 (2023), 83–93
A. Askarbekkyzy, N. A. Bazhenov, B. S. Kalmurzayev, “Computable Reducibility for Computable Linear Orders of Type ω”, J Math Sci, 267:4 (2022), 429