Аннотация:
Boolean bent functions were introduced by Rothaus (1976) as combinatorial objects related to difference sets, and have since enjoyed a great popularity in symmetric cryptography and low correlation sequence design. In this paper connections between classical Boolean bent functions, generalized Boolean bent functions and quaternary bent functions are studied. We also study Gray images of bent functions and notions of generalized nonlinearity for functions that are relevant to generalized linear cryptanalysis.
Ключевые слова:
Boolean functions, generalized Boolean functions, quaternary functions, bent functions, semi bent functions, nonlinearity, linear cryptanalysis, Gray map, Z4-linear codes.
The work of the first and the second authors was supported by Mathematical Center in Akademgorodok
under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation and Laboratory of Cryptography JetBrains Research.
Поступила5 октября 2020 г., опубликована 26 мая 2021 г.
Образец цитирования:
N. N. Tokareva, A. S. Shaporenko, P. Solé, “Connections between quaternary and Boolean bent functions”, Сиб. электрон. матем. изв., 18:1 (2021), 561–578
\RBibitem{TokShaSol21}
\by N.~N.~Tokareva, A.~S.~Shaporenko, P.~Sol\'e
\paper Connections between quaternary and Boolean bent functions
\jour Сиб. электрон. матем. изв.
\yr 2021
\vol 18
\issue 1
\pages 561--578
\mathnet{http://mi.mathnet.ru/semr1381}
\crossref{https://doi.org/10.33048/semi.2021.18.041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000674347300001}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/semr1381
https://www.mathnet.ru/rus/semr/v18/i1/p561
Эта публикация цитируется в следующих 1 статьяx:
Zhiyao YANG, Pinhui KE, Zhixiong CHEN, “Characterization and Construction of Generalized Bent Functions with Flexible Coefficients”, IEICE Trans. Fundamentals, E105.A:5 (2022), 887