Аннотация:
В последние четыре года развита теория для нахождения фундаментальных единиц в гиперэллиптических полях и на ее основе построены и реализованы принципиально новые высокоэффективные алгоритмы их вычисления. Открыт новый локально-глобальный принцип, дающий критерий существования нетривиальных единиц в гиперэллиптических полях. Естественная связь проблемы вычисления фундаментальных единиц с проблемой кручения в якобиевых многообразиях гиперэллиптических кривых над полем рациональных чисел позволила получить прорывные результаты в решении этой проблемы. Основные результаты настоящего обзора в существенной степени получены с использованием симбиоза глубокой теории, эффективных алгоритмов
и супервычислений. Подобный симбиоз будет играть все большую роль в математике 21-го века.
Библиография: 27 названий.
Ключевые слова:
фундаментальные единицы, гиперэллиптические поля, локально-глобальный принцип, якобиевы многообразия, гиперэллиптические кривые, проблема кручения в якобианах, быстрые алгоритмы, непрерывные дроби.
Образец цитирования:
В. П. Платонов, “Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел”, УМН, 69:1(415) (2014), 3–38; Russian Math. Surveys, 69:1 (2014), 1–34