Аннотация:
В работе, которая в значительной степени носит обзорный характер, приведено доказательство коэрцитивной оценки в пространствах Соболева со смешанной нормой для решения нестационарной задачи Стокса (с ненулевой дивергенцией) в ограниченных и внешних областях, а также вытекающей из нее оценки резольвенты оператора Стокса. В доказательстве используется явное представление решения задачи в полупространстве через матрицу Грина, для элементов которой выводятся поточечные оценки.
Библиография: 26 названий.
Образец цитирования:
В. А. Солонников, “Об оценках решений нестационарной задачи Стокса в анизотропных пространствах С. Л. Соболева и об оценках резольвенты оператора Стокса”, УМН, 58:2(350) (2003), 123–156; Russian Math. Surveys, 58:2 (2003), 331–365
Kyungkeun Kang, Baishun Lai, Chen-Chih Lai, Tai-Peng Tsai, “Applications of the Green Tensor Estimates of the Nonstationary Stokes System in the Half Space”, SIAM J. Math. Anal., 57:1 (2025), 1137
Kyungkeun Kang, Baishun Lai, Chen-Chih Lai, Tai-Peng Tsai, “The Green Tensor of the Nonstationary Stokes System in the Half Space”, Commun. Math. Phys., 399:2 (2023), 1291
Dominic Stone, Sergey Zelik, “The non-autonomous Navier–Stokes–Brinkman–Forchheimer equation with Dirichlet boundary conditions: dissipativity, regularity, and attractors”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2023, 1
Tongkeun Chang, Kyungkeun Kang, “Local Regularity Near Boundary for the Stokes and Navier–Stokes Equations”, SIAM J. Math. Anal., 55:5 (2023), 5051
Lai Ch.-Ch., Lin F., Wang Ch., Wei J., Zhou Y., “Finite Time Blowup For the Nematic Liquid Crystal Flow in Dimension Two”, Commun. Pure Appl. Math., 75:1 (2022), 128–196
O. Buhrii, M. Khoma, “STOKES SYSTEM WITH VARIABLE EXPONENTS OF NONLINEARITY”, BMJ, 10:2 (2022), 28
Abe K., “The Vorticity Equations in a Half Plane With Measures as Initial Data”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 38:4 (2021), 1055–1094
Deuring P., “L-P-Estimates of the Stokes Resolvent With Nonhomogeneous Dirichlet Boundary Conditions in 3D Exterior Domains”, Math. Meth. Appl. Sci., 44:17 (2021), 13252–13272
Kim S., “Hydrodynamics of Anisotropic Liquid Crystals in An Applied Magnetic Field”, SIAM J. Math. Anal., 53:3 (2021), 3123–3157
Seregin G., “Local Regularity of Axisymmetric Solutions to the Navier-Stokes Equations”, Anal. Math. Phys., 10:4 (2020), 46
Dong H., Pan X., “Time Analyticity For Inhomogeneous Parabolic Equations and the Navier-Stokes Equations in the Half Space”, J. Math. Fluid Mech., 22:4 (2020), 53
Kozlov V., Rossmann J., “On the Nonstationary Stokes System in a Cone (l-P Theory)”, J. Math. Fluid Mech., 22:3 (2020), 42
Tongkeun Chang, Bum Ja Jin, “Global well-posedness of the half space problem of the Navier–Stokes equations in critical function spaces of limiting case”, Ann Univ Ferrara, 66:2 (2020), 273
F. Lanzara, V. Maz'ya, G. Schmidt, “Approximation of Solutions to Nonstationary Stokes System”, J Math Sci, 244:3 (2020), 436
M. Chernobay, “On Type I Blow up for The Navier–Stokes Equations Near the Boundary”, J Math Sci, 244:6 (2020), 1015
Azal Mera, Alexander A. Shlapunov, Nikolai Tarkhanov, “Navier–Stokes equations for elliptic complexes”, Журн. СФУ. Сер. Матем. и физ., 12:1 (2019), 3–27
Kim H., Thomann E.A., Guenther R.B., “A Representation of the Solution of the Stokes Equations in the Half Space R+3: Application to Spatial and Temporal Estimates of the Pressure”, J. Math. Fluid Mech., 21:1 (2019), UNSP 16
Chang T., Jin B.J., “Global in Time Solvability of the Navier-Stokes Equations in the Half-Space”, J. Differ. Equ., 267:7 (2019), 4293–4319
Tongkeun Chang, Bum Ja Jin, “Initial-boundary value problem of the Navier–Stokes equations in the half space with nonhomogeneous data”, Ann Univ Ferrara, 65:1 (2019), 29