Аннотация:
Классическая теорема Вейерштрасса утверждает, что среди аналитических функций алгебраической теоремой сложения обладают лишь эллиптические функции и их вырождения. Обзор посвящен далеко идущим обобщениям этого результата,
мотивированным теорией интегрируемых систем.
Открытая авторами сильная форма теоремы сложения для тэта-функций якобиевых многообразий привела к новым подходам к известным задачам геометрии абелевых
многообразий. Показано, что сильные формы теорем сложения естественно возникают в теории так называемых трилинейных функциональных уравнений. Обсуждаются различные аспекты предложенных подходов, сформулирован ряд открытых,
актуальных проблем.
Библиография: 64 названия.
Образец цитирования:
В. М. Бухштабер, И. М. Кричевер, “Интегрируемые уравнения, теоремы сложения и проблема Римана–Шоттки”, УМН, 61:1(367) (2006), 25–84; Russian Math. Surveys, 61:1 (2006), 19–78