Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2002, том 7, выпуск 2, страницы 177–200
DOI: https://doi.org/10.1070/RD2002v007n02ABEH000204
(Mi rcd811)
 

Эта публикация цитируется в 148 научных статьях (всего в 148 статьях)

Nonholonomic Systems

The rolling motion of a rigid body on a plane and a sphere. Hierarchy of dynamics

A. V. Borisova, I. S. Mamaevb

a Department of Theoretical Mechanics, Moscow State University, Vorob'ievy Gory, 119899, Moscow, Russia
b Laboratory of Dynamical Chaos and Nonlinearity, Udmurt State University, Universitetskaya, 1, 426034, Izhevsk, Russia
Аннотация: In this paper we study the cases of existence of an invariant measure, additional first integrals, and a Poisson structure in the problem of rigid body's rolling without sliding on a plane and a sphere. The problem of rigid body's motion on a plane was studied by S.A. Chaplygin, P. Appel, D. Korteweg. They showed that the equations of motion are reduced to a second-order linear differential equation in the case when the surface of the dynamically symmetrical body is a surface of revolution. These results were partially generalized by P. Woronetz, who studied the motion of a body of revolution and the motion of round disk with sharp edge on a sphere. In both cases the systems are Euler–Jacobi integrable and have additional integrals and invariant measure. It can be shown that by an appropriate change of time (determined by reducing multiplier), the reduced system is a Hamiltonian one. Here we consider some particular cases when the integrals and the invariant measure can be presented as finite algebraic expressions. We also consider a generalized problem of rolling of a dynamically nonsymmetric Chaplygin ball. The results of investigations are summarized in tables to illustrate the hierarchy of existence of various tensor invariants: invariant measure, integrals, and Poisson structure.
Поступила в редакцию: 17.01.2002
Реферативные базы данных:
Тип публикации: Статья
MSC: 37J60, 37J35
Язык публикации: английский
Образец цитирования: A. V. Borisov, I. S. Mamaev, “The rolling motion of a rigid body on a plane and a sphere. Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200
Цитирование в формате AMSBIB
\RBibitem{BorMam02}
\by A. V. Borisov, I. S. Mamaev
\paper The rolling motion of a rigid body on a plane and a sphere. Hierarchy of dynamics
\jour Regul. Chaotic Dyn.
\yr 2002
\vol 7
\issue 2
\pages 177--200
\mathnet{http://mi.mathnet.ru/rcd811}
\crossref{https://doi.org/10.1070/RD2002v007n02ABEH000204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1912983}
\zmath{https://zbmath.org/?q=an:1058.70009}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd811
  • https://www.mathnet.ru/rus/rcd/v7/i2/p177
  • Эта публикация цитируется в следующих 148 статьяx:
    1. Mariana Costa-Villegas, Luis C. García-Naranjo, “Affine Generalizations of the Nonholonomic Problem of a Convex Body Rolling without Slipping on the Plane”, Regul. Chaot. Dyn., 2025  crossref
    2. Paula Balseiro, Danilo Machado-Tereza, “Nonholonomic momentum map reduction and a Chaplygin-type foliation”, Nonlinearity, 38:5 (2025), 055006  crossref
    3. A. G. Agúndez, D. García-Vallejo, E. Freire, “Analytical and numerical stability analysis of a toroidal wheel with nonholonomic constraints”, Nonlinear Dyn, 112:4 (2024), 2453  crossref
    4. Alexander A. Kilin, Elena N. Pivovarova, “Bifurcation analysis of the problem of a “rubber” ellipsoid of revolution rolling on a plane”, Nonlinear Dyn, 2024  crossref
    5. Amir H Fariborz, “An alternative to the Euler equation of rigid body rotational dynamics”, Eur. J. Phys., 45:5 (2024), 055006  crossref
    6. Ahmed A. Shabana, “Contact-constraint forces associated with the non-generalized coordinates and interpretation of their Lagrange multipliers”, Nonlinear Dyn, 2024  crossref
    7. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — a Study of Integrable Cases”, Regul. Chaotic Dyn., 28:1 (2023), 62–77  mathnet  crossref  mathscinet
    8. Alexander A. Kilin, Elena N. Pivovarova, “Dynamics of an Unbalanced Disk with a Single Nonholonomic Constraint”, Regul. Chaotic Dyn., 28:1 (2023), 78–106  mathnet  crossref  mathscinet
    9. Hiroshi Takano, “Analyzing the Motion of a Washer on a Rod”, Regul. Chaotic Dyn., 28:2 (2023), 227–250  mathnet  crossref  mathscinet
    10. A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17  mathnet  crossref  mathscinet
    11. A. A. Kilin, T. B. Ivanova, “The Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:4 (2023), 533–543  mathnet  crossref
    12. Paula Balseiro, Maria Eugenia Garcia, Cora Inés Tori, Marcela Zuccalli, “Momentum map reduction for nonholonomic systems”, Nonlinearity, 36:10 (2023), 5401  crossref
    13. Yifan Liu, “On the dynamics of rotating rigid tube and its interaction with air”, Math. Model. Nat. Phenom., 18 (2023), 31  crossref
    14. Alexander A. Kilin, Elena N. Pivovarova, “Stability of Vertical Rotations of an Axisymmetric Ellipsoid on a Vibrating Plane”, Mathematics, 11:18 (2023), 3948  crossref
    15. Alexey V. Borisov, Alexander P. Ivanov, “A Top on a Vibrating Base: New Integrable Problem of Nonholonomic Mechanics”, Regul. Chaotic Dyn., 27:1 (2022), 2–10  mathnet  crossref  mathscinet
    16. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — Nonholonomic Systems with Invariant Measures”, Regul. Chaotic Dyn., 27:4 (2022), 424–442  mathnet  crossref  mathscinet
    17. Ivan A. Bizyaev, Ivan S. Mamaev, “Permanent Rotations in Nonholonomic Mechanics. Omnirotational Ellipsoid”, Regul. Chaotic Dyn., 27:6 (2022), 587–612  mathnet  crossref  mathscinet
    18. Paula Balseiro, Nicola Sansonetto, “First Integrals and Symmetries of Nonholonomic Systems”, Arch Rational Mech Anal, 244:2 (2022), 343  crossref
    19. Aleksandar Obradović, Zoran Mitrović, Slaviša Šalinić, “On the problem of a heavy homogeneous ball rolling without slipping over a fixed surface of revolution”, Applied Mathematics and Computation, 420 (2022), 126906  crossref
    20. Oscar E. Fernandez, “Quantizing Chaplygin Hamiltonizable nonholonomic systems”, Sci Rep, 12:1 (2022)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:364
     
      Обратная связь:
    math-net2025_04@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025