Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2002, том 7, выпуск 1, страницы 43–47
DOI: https://doi.org/10.1070/RD2002v007n01ABEH000194
(Mi rcd801)
 

Эта публикация цитируется в 28 научных статьях (всего в 28 статьях)

Nonholonomic Systems

On the History of the Development of the Nonholonomic Dynamics

A. V. Borisova, I. S. Mamaevb

a Department of Theoretical Mechanics, Moscow State University, Vorob'ievy Gory, 119899, Moscow, Russia
b Laboratory of Dynamical Chaos and Nonlinearity, Udmurt State University, Universitetskaya, 1, 426034, Izhevsk, Russia
Аннотация: The main directions in the development of the nonholonomic dynamics are briefly considered in this paper. The first direction is connected with the general formalizm of the equations of dynamics that differs from the Lagrangian and Hamiltonian methods of the equations of motion's construction. The second direction, substantially more important for dynamics, includes investigations concerning the analysis of the specific nonholonomic problems. We also point out rather promising direction in development of nonholonomic systems that is connected with intensive use of the modern computer-aided methods.
Поступила в редакцию: 09.11.2001
Реферативные базы данных:
Тип публикации: Personalia
MSC: 70E18, 70E40
Язык публикации: английский
Образец цитирования: A. V. Borisov, I. S. Mamaev, “On the History of the Development of the Nonholonomic Dynamics”, Regul. Chaotic Dyn., 7:1 (2002), 43–47
Цитирование в формате AMSBIB
\RBibitem{BorMam02}
\by A. V. Borisov, I. S. Mamaev
\paper On the History of the Development of the Nonholonomic Dynamics
\jour Regul. Chaotic Dyn.
\yr 2002
\vol 7
\issue 1
\pages 43--47
\mathnet{http://mi.mathnet.ru/rcd801}
\crossref{https://doi.org/10.1070/RD2002v007n01ABEH000194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1900053}
\zmath{https://zbmath.org/?q=an:1011.70002}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd801
  • https://www.mathnet.ru/rus/rcd/v7/i1/p43
  • Эта публикация цитируется в следующих 28 статьяx:
    1. A. A. Kilin, T. B. Ivanova, “The Integrable Problem of the Rolling Motion of a Dynamically Symmetric Spherical Top with One Nonholonomic Constraint”, Rus. J. Nonlin. Dyn., 19:1 (2023), 3–17  mathnet  crossref  mathscinet
    2. E. M. Artemova, A. A. Kilin, “A Nonholonomic Model and Complete Controllability of a Three-Link Wheeled Snake Robot”, Rus. J. Nonlin. Dyn., 18:4 (2022), 681–707  mathnet  crossref  mathscinet
    3. Kartik Loya, Phanindra Tallapragada, “Stabilization of an Inverted Pendulum on a Nonholonomic System”, IFAC-PapersOnLine, 55:37 (2022), 764  crossref
    4. Colin Rodwell, Phanindra Tallapragada, “Induced and tunable multistability due to nonholonomic constraints”, Nonlinear Dyn, 108:3 (2022), 2115  crossref
    5. Prashanth Chivkula, Colin Rodwell, Phanindra Tallapragada, “Curriculum-based reinforcement learning for path tracking in an underactuated nonholonomic system”, IFAC-PapersOnLine, 55:37 (2022), 339  crossref
    6. de Leon M., Jimenez V.M., Lainz M., “Contact Hamiltonian and Lagrangian Systems With Nonholonomic Constraints”, J. Geom. Mech., 13:1, SI (2021), 25–53  crossref  mathscinet  isi  scopus
    7. Balseiro P. Yapu L.P., “Conserved Quantities and Hamiltonization of Nonholonomic Systems”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 38:1 (2021), 23–60  crossref  mathscinet  isi  scopus
    8. Fedonyuk V., Tallapragada Ph., “Locomotion of a Compliant Mechanism With Nonholonomic Constraints”, J. Mech. Robot., 12:5 (2020), 051006  crossref  isi  scopus
    9. Yi B., Ortega R., Zhang W., “Smooth, Time-Invariant Regulation of Nonholonomic Systems Via Energy Pumping-and-Damping”, Int. J. Robust Nonlinear Control, 30:16 (2020), 6399–6413  crossref  mathscinet  isi  scopus
    10. A V Doroshin, “Change of mechanical structures of spacecraft with variable quantity of degrees of freedom in purposes of reaction/momentum wheels unloading”, IOP Conf. Ser.: Mater. Sci. Eng., 984:1 (2020), 012006  crossref
    11. Elizaveta M. Artemova, Alexander A. Kilin, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    12. Pollard B., Fedonyuk V., Tallapragada Ph., “Swimming on Limit Cycles With Nonholonomic Constraints”, Nonlinear Dyn., 97:4 (2019), 2453–2468  crossref  zmath  isi  scopus
    13. Yi B., Ortega R., Zhang W., “Regulation of Nonholonomic Systems: a Smooth, Time-Invariant Approach”, IFAC PAPERSONLINE, 52:16 (2019), 150–155  crossref  isi  scopus
    14. Fedonyuk V., Tallapragada Ph., “Chaotic Dynamics of the Chaplygin Sleigh With a Passive Internal Rotor”, Nonlinear Dyn., 95:1 (2019), 309–320  crossref  mathscinet  isi  scopus
    15. Sergiy Koshkin, Vojin Jovanovic, “Realization of non-holonomic constraints and singular perturbation theory for plane dumbbells”, J Eng Math, 106:1 (2017), 123  crossref
    16. А. В. Борисов, И. С. Мамаев, И. А. Бизяев, “Историко-критический обзор развития неголономной механики: классический период”, Нелинейная динам., 12:3 (2016), 385–411  mathnet  crossref  zmath  elib
    17. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “Historical and Critical Review of the Development of Nonholonomic Mechanics: the Classical Period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476  mathnet  crossref
    18. Anthony Bloch, Leonardo Colombo, Rohit Gupta, David Martín de Diego, Springer INdAM Series, 11, Analysis and Geometry in Control Theory and its Applications, 2015, 35  crossref
    19. Alejandro Donaire, Jose Guadalupe Romero, Tristan Perez, Romeo Ortega, 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, 4385  crossref
    20. Hernán Cendra, María Etchechoury, Sebastián J. Ferraro, “An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems”, Journal of Geometric Mechanics, 6:2 (2014), 167  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:143
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025