Аннотация:
Let M be the phase space of a physical system. Consider the dynamics,
determined by the invertible map T:M→M, preserving the measure μ
on M. Let ν be another measure on M, dν=ρdμ. Gibbs
introduced the quantity s(ρ)=−∫ρlogρdμ as an analog of
the thermodynamical entropy. We consider a modification of the Gibbs
(fine-grained) entropy the so called coarse-grained entropy.
First we obtain a formula for the difference between the coarse-grained
and Gibbs entropy. The main term of the difference is expressed by a
functional usually referenced to as the Fisher information.
Then we consider the behavior of the coarse-grained entropy as a
function of time. The dynamics transforms ν in the following
way: ν↦νn, dνn=ρ∘T−ndμ. Hence, we
obtain the sequence of densities ρn=ρ∘T−n and the
corresponding values of the Gibbs and the coarse-grained entropy.
We show that while the Gibbs entropy remains constant, the
coarse-grained entropy has a tendency to a growth and this growth
is determined by dynamical properties of the map T.
Finally, we give numerical calculation of the coarse-grained entropy as
a function of time for systems with various dynamical properties:
integrable, chaotic and with mixed dynamics and compare these
calculation with theoretical statements.
\RBibitem{PifTre10}
\by G. Piftankin, D. Treschev
\paper Coarse-grained entropy in dynamical systems
\jour Regul. Chaotic Dyn.
\yr 2010
\vol 15
\issue 4-5
\pages 575--597
\mathnet{http://mi.mathnet.ru/rcd517}
\crossref{https://doi.org/10.1134/S156035471004012X}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2679766}
\zmath{https://zbmath.org/?q=an:1203.37008}
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd517
https://www.mathnet.ru/rus/rcd/v15/i4/p575
Эта публикация цитируется в следующих 5 статьяx:
Casey O Barkan, “On the convergence of phase space distributions to microcanonical equilibrium: dynamical isometry and generalized coarse-graining”, J. Phys. A: Math. Theor., 57:47 (2024), 475001
В. И. Богачев, “Приближения нелинейных интегральных функционалов типа энтропии”, Избранные вопросы математики и механики, Сборник статей. К 70-летию со дня рождения академика Валерия Васильевича Козлова, Труды МИАН, 310, МИАН, М., 2020, 7–18; V. I. Bogachev, “Approximations of Nonlinear Integral Functionals of Entropy Type”, Proc. Steklov Inst. Math., 310 (2020), 1–11
Wenmeng Zhang, Kening Lu, Weinian Zhang, “Differentiability of the conjugacy in the Hartman-Grobman Theorem”, Trans. Amer. Math. Soc., 369:7 (2017), 4995
V. V. Kozlov, “Coarsening in ergodic theory”, Russ. J. Math. Phys., 22:2 (2015), 184–187
Kouji Yano, “Entropy of random chaotic interval map with noise which causes coarse-graining”, Journal of Mathematical Analysis and Applications, 414:1 (2014), 250